Sets of values of systems of functionals in classes of univalent functions
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 499-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of describing the set of values of a system of functional $\{f(z),\dots,f^{(n)}(z)\}$ in the class of univalent functions holomorphic in the disk is formalized as a problem of constructing the set of attainability for a control system generated by the Löwner equation. In this problem the maximum principle turns out to be a necessary and sufficient condition for optimality. An algorithm for finding this set for a generalized Loewner equation with constant coefficients and continuous control is constructed. The results are extended to classes of bounded univalent functions.
@article{SM_1992_71_2_a14,
     author = {D. V. Prokhorov},
     title = {Sets of values of systems of functionals in classes of univalent functions},
     journal = {Sbornik. Mathematics},
     pages = {499--516},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a14/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Sets of values of systems of functionals in classes of univalent functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 499
EP  - 516
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a14/
LA  - en
ID  - SM_1992_71_2_a14
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Sets of values of systems of functionals in classes of univalent functions
%J Sbornik. Mathematics
%D 1992
%P 499-516
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a14/
%G en
%F SM_1992_71_2_a14
D. V. Prokhorov. Sets of values of systems of functionals in classes of univalent functions. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 499-516. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a14/

[1] Schaeffer A. C., Spencer D. C., Coefficient regions for schlicht functions, Amer. Math. Soc. Colloq. Publ., 35, New York, 1950 | MR | Zbl

[2] Babenko K. I., K teorii ekstremalnykh zadach dlya odnolistnykh funktsii klassa $S$, Tr. MMO, 101, 1972 | MR | Zbl

[3] Popov V. I., “Oblast znachenii odnoi sistemy funktsionalov na klasse $S$”, Voprosy geometricheskoi teorii funktsii, no. 3, 1965, 106–132 ; Тр. Томского ун-та, 182 | MR | Zbl

[4] Gutlyanskii V. Ya., “Parametricheskoe predstavlenie odnolistnykh funktsii”, DAN SSSR, 194:4 (1970), 750–753 | Zbl

[5] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976 | MR

[6] Kufarev P. P., “K teorii odnolistnykh funktsii”, DAN SSSR, 57:8 (1947), 751–754 | MR | Zbl

[7] Fedorova V. S., “Ob obobschennom uravnenii Levnera”, Uch. zapiski Tomskogo ped. in-ta, 4 (1947), 19–24

[8] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M.–L., 1948