Calibration forms and new examples of stable and globally minimal surfaces
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 289-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the development of methods of investigating the stability and global minimality of specific surfaces in Euclidean space and more generally in the Riemannian manifold. The author has obtained an effective sufficient condition for the stability of symmetric cones of any codimension in Euclidean space. By means of this sufficient condition he has proved the stability of several new series of cones of codimension two and higher. The author has constructed a new class of globally minimal surfaces in locally trivial vector bundles. The proof of the basic theorems is carried out by means of the construction of suitable calibration forms.
@article{SM_1992_71_2_a1,
     author = {A. O. Ivanov},
     title = {Calibration forms and new examples of stable and globally minimal surfaces},
     journal = {Sbornik. Mathematics},
     pages = {289--308},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a1/}
}
TY  - JOUR
AU  - A. O. Ivanov
TI  - Calibration forms and new examples of stable and globally minimal surfaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 289
EP  - 308
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a1/
LA  - en
ID  - SM_1992_71_2_a1
ER  - 
%0 Journal Article
%A A. O. Ivanov
%T Calibration forms and new examples of stable and globally minimal surfaces
%J Sbornik. Mathematics
%D 1992
%P 289-308
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a1/
%G en
%F SM_1992_71_2_a1
A. O. Ivanov. Calibration forms and new examples of stable and globally minimal surfaces. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 289-308. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a1/

[1] Douglas J., “The higher topological form of Plateau's problem”, Ann. R. Scuola Norm. Super. Pisa. Ser. 2, 8 (1939), 1–24

[2] Courant R., “Plateau's problem and Dirichlet's principle”, Ann. Math., 38 (1937), 679–724 | DOI | MR | Zbl

[3] Rado T., “The problem of least area and the problem of Plateau”, Math. Z., 32 (1930), 763–796 | DOI | MR

[4] Reifenberg E. R., “Solution of Plateau problem for $m$-dimensional surfases of varying topological type”, Acta Math., 104:2 (1960), 1–92 | DOI | MR | Zbl

[5] Morry Ch. B., “The problem of Plateau on a Riemannian manifold”, Ann. Math., 49:4 (1948), 807–851 | DOI | MR

[6] Federer H., Fleming W. Y., “Normal and integral currents”, Ann. Math., 72:3 (1960), 458–520 | DOI | MR | Zbl

[7] Almgren F. J., Plateau's problem. An invitation to varifold geometry, Bendjamin, N. Y., 1966 | Zbl

[8] Fomenko A. T., “Mnogomernaya zadacha Plato v rimanovykh mnogoobraziyakh”, Matem. sb., 89(131) (1972), 475–520 | MR

[9] Dao Chong Tkhi, “Multivarifordy i klassicheskie mnogomernye zadachi Plato”, Izv. AN SSSR, 44:5 (1980), 1031–1065 | MR | Zbl

[10] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR

[11] Fomenko A. T., “Minimalnye kompakty v rimanovykh mnogoobraziyakh i gipoteza Raifenberga”, Izv. AN SSSR, 36:5 (1972), 1049–1080 | MR

[12] Le Khong Van, Fomenko A. T., “Lagranzhevy mnogoobraziya i indeks Maslova v teorii minimalnykh poverkhnostei”, DAN SSSR, 299:1 (1988), 42–45

[13] Harvey R., Lawson H. B., “Calibrated geometries”, Acta. Math., 148 (1982), 47–157 | DOI | MR | Zbl

[14] Dao Chong Tkhi, Veschestvennye minimalnye potoki v kompaktnykh gruppakh Li, Tr. seminara po vekt. i tenz. analizu, no. 19, Izd-vo MGU, 1979

[15] Le Khong Van, Minimalnye poverkhnosti i formy kalibrovki v simmetricheskikh prostranstvakh, Tr. seminara po vekt. i tenz. analizu, no. 22, Izd-vo MGU, 1985

[16] Borisenko A. A., “Issledovanie globalnoi minimalnosti vlozhenii odnorodnogo prostranstva $G_2/F_4$, indutsirovannykh fundamentalnymi predstavleniyami” (to appear)

[17] Morgan F., Harvey R., “The Faces of the Grassmanian of 3-planes in $R^7$ (Calibrated geometries on $R^7$)”, Inv. Math., 83 (1986), 191–228 | DOI | MR | Zbl

[18] Morgan F., “The exterior algebra $\Lambda^k\mathbf{R}^n$ and area minimization”, Lin. Alg. App., 66 (1985), 1–28 | DOI | MR | Zbl

[19] Nance D., “Sufficient Conditions for a pair of $n$-planes to be area-minimizing”, Math. Ann., 279 (1987), 161–164 | DOI | MR | Zbl

[20] Lawlor G., “The Angle Criterion”, Inv. Math. (to appear) | Zbl

[21] Almgren F. J., “Some interior regularity theorems for minimal surfaces and extension of Bernstein's theorem”, Ann. Math., 84:3 (1966), 277–293 | DOI | MR

[22] Simons J., “Minimal varietites in Riemannian manifolds”, Ann. Math., 88:1 (1968), 62–105 | DOI | MR | Zbl

[23] Bombieri E., de Giorgi E., Giusti E., “Minimal cones and the Bernstein problem”, Inv. Math., 7:3 (1969), 243–268 | DOI | MR | Zbl

[24] Hsiang W. Y., Lawson H. B., “Minimal submanifolds of low cohomogenety”, J. Diff. Geom., 5:1 (1971), 1–38 | MR | Zbl

[25] Lawson H. B., “The equiwariant Plateau problem and interior regularity”, Trans Amer. Math. Soc., 173:2 (1972), 231–249 | DOI | MR | Zbl

[26] Cheng B., Area Minimizing Equiwariant Cones and Coflat Calibrations, Ph. D. Thesis, Mass. Inst. of Technology, 1987

[27] Balinskaya I. S., Minimalnye konusy prisoedinennogo deistviya klassicheskikh grupp Li, Tr. seminara po vekt. i tenz. analizu, no. 23, Izd-vo MGU, 1988 | MR

[28] Lawlor G., The curvatur criterion, Ph. D. Thesis, Stanford U., 1988

[29] Bindschadler D., “Invariant solutions to the oriented Plateau problem of maximal codimention”, Trans. Amer. Math. Soc., 261:2 (1980), 439–462 | DOI | MR | Zbl

[30] Simoes P., “On a clas of minimal cones in $R^N$”, AMS Bull., 80 (1974), 488–489 | DOI | MR | Zbl

[31] Ivanov A. O., Globalno minimalnye simmetrichnye poverkhnosti v evklidovom prostranstve. Geometriya, differentsialnye uravneniya i mekhanika, Izd-vo MGU, M., 1986, S. 69–71

[32] Ivanov A. O., Minimalnye konusy bolshoi korazmernosti. Novoe v globalnom analize, Izd-vo Voronezh. un-ta, Voronezh, 1987

[33] Sullivan D., “Infinitesimal calculations in topology”, Publ. math. I. H. E. S., 47 (1977), 269–331 | MR | Zbl