Asymptotic problems connected with the heat equation in perforated domains
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 125-147

Voir la notice de l'article provenant de la source Math-Net.Ru

For the diffusion equation in the exterior of a closed set $F\subset\mathbf R^m$, $m\geqslant 2$, with Neumann conditions on the boundary, \begin{gather*} 2\frac{\partial u}{\partial t}=\nabla u \quad\text{in}\quad \mathbf R^m\setminus F, \quad t>0, \\ \frac{\partial u}{\partial n}\bigg|_{\partial F}=0, \quad u\big|_{t=0}=f, \end{gather*} pointwise stabilization, the central limit theorem, and uniform stabilization are studied. The basic condition on the set $F$ is formulated in terms of extension properties. Model examples of sets $F$ are indicated which are of interest from the viewpoint of mathematical physics and applied probability theory.
@article{SM_1992_71_1_a8,
     author = {V. V. Zhikov},
     title = {Asymptotic problems connected with the heat equation in perforated domains},
     journal = {Sbornik. Mathematics},
     pages = {125--147},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a8/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Asymptotic problems connected with the heat equation in perforated domains
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 125
EP  - 147
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a8/
LA  - en
ID  - SM_1992_71_1_a8
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Asymptotic problems connected with the heat equation in perforated domains
%J Sbornik. Mathematics
%D 1992
%P 125-147
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a8/
%G en
%F SM_1992_71_1_a8
V. V. Zhikov. Asymptotic problems connected with the heat equation in perforated domains. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 125-147. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a8/