Perturbation theory formulas for the Schr\"odinger equation with a~nonsmooth periodic potential
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 101-123

Voir la notice de l'article provenant de la source Math-Net.Ru

Series from perturbation theory are constructed for the Bloch eigenvalues and eigenfunctions for the periodic Schrödinger operator in $R^3$. An extensive set of quasimomenta on which the series converge is described. It is shown that the series have asymptotic character at high energies. They are infinitely differentiable with respect to the quasimomentum, and preserve their asymptotic character under such differentiation.
@article{SM_1992_71_1_a7,
     author = {Yu. E. Karpeshina},
     title = {Perturbation theory formulas for the {Schr\"odinger} equation with a~nonsmooth periodic potential},
     journal = {Sbornik. Mathematics},
     pages = {101--123},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a7/}
}
TY  - JOUR
AU  - Yu. E. Karpeshina
TI  - Perturbation theory formulas for the Schr\"odinger equation with a~nonsmooth periodic potential
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 101
EP  - 123
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a7/
LA  - en
ID  - SM_1992_71_1_a7
ER  - 
%0 Journal Article
%A Yu. E. Karpeshina
%T Perturbation theory formulas for the Schr\"odinger equation with a~nonsmooth periodic potential
%J Sbornik. Mathematics
%D 1992
%P 101-123
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a7/
%G en
%F SM_1992_71_1_a7
Yu. E. Karpeshina. Perturbation theory formulas for the Schr\"odinger equation with a~nonsmooth periodic potential. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 101-123. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a7/