On the approximation of functions by interpolating splines defined on nonuniform nets
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New results are obtained on the approximation of elements of Sobolev classes $W_p^l$ in the $L_q$ metric by interpolating splines of order $2m-1$ and deficiency 1, defined on nonuniform nets $\Delta_n$. The results are stated in terms of global and local properties of $\Delta_n$, and depend mainly on an integral representation of the error.
@article{SM_1992_71_1_a6,
     author = {A. Yu. Shadrin},
     title = {On the approximation of~functions by interpolating splines defined on nonuniform nets},
     journal = {Sbornik. Mathematics},
     pages = {81--99},
     year = {1992},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Shadrin
TI  - On the approximation of functions by interpolating splines defined on nonuniform nets
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 81
EP  - 99
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/
LA  - en
ID  - SM_1992_71_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Shadrin
%T On the approximation of functions by interpolating splines defined on nonuniform nets
%J Sbornik. Mathematics
%D 1992
%P 81-99
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/
%G en
%F SM_1992_71_1_a6
A. Yu. Shadrin. On the approximation of functions by interpolating splines defined on nonuniform nets. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[3] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Tr. MIAN SSSR, 138, 1975, 71–93 | MR

[4] Zmatrakov N. L., “Skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov v metrikakh $L_p$ ($1\leqslant p\leqslant\infty$)”, Matem. zametki, 30:1 (1981), 83–99 | MR | Zbl

[5] Zmatrakov N. L., “Raskhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov v metrikakh $L_p$”, Matem. zametki, 31:5 (1982), 707–722 | MR | Zbl

[6] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[7] Boor C. de., “Odd degree spline interpolation at a biinfinite knot sequence”, Lect. Notes Math., 556, 1976, 30–53 | DOI | MR | Zbl

[8] Friedland S., Micchelli C., “Bounds on the solution of difference equations and the spline interpolation at knots”, Linear Algebra and its Appl., 20:3 (1978), 219–251 | DOI | MR | Zbl

[9] Subbotin Yu. N., “Splain-approksimatsiya”, Teoriya funktsii i priblizhenii, Mezhvuz. nauch. sb., Izd-vo Sarat. Un-ta, Saratov, 1983, 81–90 | MR

[10] Golomb M., “Approximation by periodic splines on uniform meshes”, J. Approx. Th., 1:1 (1968), 26–65 | DOI | MR | Zbl

[11] Zhensykbaev A. A., “Priblizhenie differentsiruemykh periodicheskikh funktsii splainami po ravnomernomu razbieniyu”, Matem. zametki, 13:6 (1973), 807–816

[12] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[13] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR

[14] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[16] Ligun A. A., “Ob odnom svoistve interpolyatsionnykh splain-funktsii”, Ukr. matem. zhurn., 32:4 (1980), 507–514 | MR | Zbl

[17] Boor C. de, “On cubic spline functions that vanish at all knots”, Adv. Math., 20:1 (1976), 1–17 | DOI | MR | Zbl

[18] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vyp. 106: Vychislitelnye sistemy, Novosibirsk, 1984, 41–56 | MR | Zbl

[19] Volkov Yu. S., “O skhodimosti interpolyatsionnykh splainov v terminakh lokalnoi setochnoi kharakteristiki”, Aproksimatsiya splainami, Vyp. 128: Vychislitelnye sistemy, Novosibirsk, 1988, 32–38 | Zbl

[20] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 575 pp. | MR

[21] Shadrin A. Yu., “O skorosti skhodimosti interpolyatsionnykh splainov, zadannykh na neravnomernykh setkakh”, Dokl. AN SSSR, 307:6 (1989), 1331–1334 | MR | Zbl

[22] Rong-Quang Jia., “On a conjecture of C. A. Micchelli concerning cubic spline interpolation at a biinfinife knot sequence”, J. Approx. Th., 38:3 (1983), 284–292 | DOI | MR