On the approximation of~functions by interpolating splines defined on nonuniform nets
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99
Voir la notice de l'article provenant de la source Math-Net.Ru
New results are obtained on the approximation of elements of Sobolev classes $W_p^l$ in the $L_q$ metric by interpolating splines of order $2m-1$ and deficiency 1, defined on nonuniform nets $\Delta_n$. The results are stated in terms of global and local properties of $\Delta_n$, and depend mainly on an integral representation of the error.
@article{SM_1992_71_1_a6,
author = {A. Yu. Shadrin},
title = {On the approximation of~functions by interpolating splines defined on nonuniform nets},
journal = {Sbornik. Mathematics},
pages = {81--99},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/}
}
A. Yu. Shadrin. On the approximation of~functions by interpolating splines defined on nonuniform nets. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/