On the approximation of~functions by interpolating splines defined on nonuniform nets
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99

Voir la notice de l'article provenant de la source Math-Net.Ru

New results are obtained on the approximation of elements of Sobolev classes $W_p^l$ in the $L_q$ metric by interpolating splines of order $2m-1$ and deficiency 1, defined on nonuniform nets $\Delta_n$. The results are stated in terms of global and local properties of $\Delta_n$, and depend mainly on an integral representation of the error.
@article{SM_1992_71_1_a6,
     author = {A. Yu. Shadrin},
     title = {On the approximation of~functions by interpolating splines defined on nonuniform nets},
     journal = {Sbornik. Mathematics},
     pages = {81--99},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Shadrin
TI  - On the approximation of~functions by interpolating splines defined on nonuniform nets
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 81
EP  - 99
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/
LA  - en
ID  - SM_1992_71_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Shadrin
%T On the approximation of~functions by interpolating splines defined on nonuniform nets
%J Sbornik. Mathematics
%D 1992
%P 81-99
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/
%G en
%F SM_1992_71_1_a6
A. Yu. Shadrin. On the approximation of~functions by interpolating splines defined on nonuniform nets. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a6/