Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of webs
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 65-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Weakly nonlinear semi-Hamiltonian systems of $n$ differential equations of hydrodynamic type in Riemann invariants are considered, and the geometry of the $(n+2)$-web formed by the characteristics and the level lines of the independent variables are studied. It is shown that the rank of this web on the general solution of the system is equal to $n$. This result is used to obtain formulas for the general integral of the systems under consideration, with the necessary arbitrariness in $n$ functions of a single argument. Separate consideration is given to the cases $n=3$ and $n=4$, for which it is possible not only to integrate the corresponding systems, but also to give a complete classification of them to within so-called transformations via a solution (reciprocal transformations). It turns out that for $n=3$ they can all be linearized (and are thus equivalent), while for $n=4$ there exist exactly five mutually nonequivalent systems, and any other system can be reduced to one of them by a transformation via a solution. There is a discussion of the connection between weakly nonlinear semi-Hamiltonian systems and Dupin cyclides-hypersurfaces of Euclidean space whose principal curvatures are constant along the corresponding principal directions. Some unsolved problems are formulated at the end of the paper.
@article{SM_1992_71_1_a5,
     author = {E. V. Ferapontov},
     title = {Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of~webs},
     journal = {Sbornik. Mathematics},
     pages = {65--79},
     year = {1992},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a5/}
}
TY  - JOUR
AU  - E. V. Ferapontov
TI  - Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of webs
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 65
EP  - 79
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a5/
LA  - en
ID  - SM_1992_71_1_a5
ER  - 
%0 Journal Article
%A E. V. Ferapontov
%T Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of webs
%J Sbornik. Mathematics
%D 1992
%P 65-79
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a5/
%G en
%F SM_1992_71_1_a5
E. V. Ferapontov. Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of webs. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a5/

[1] Rozhdestvenskii B. L., Sidorenko A. D., “O nevozmozhnosti gradientnoi katastrofy dlya slabo-nelineinykh sistem”, ZhVM i MF, 7:5 (1967), 1176–1179 | MR | Zbl

[2] Tsarev S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, DAN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[3] Menshikh O. F., “O vzaimodeistvii finitnykh uedinennykh voln dlya uravnenii tipa Borna - Infelda”, TMF, 79:1 (1989), 16–29 | MR

[4] Ferapontov E. V., “Sistemy trekh differentsialnykh uravnenii gidrodinamicheskogo tipa s shestiugolnoi 3-tkanyu kharakteristik na resheniyakh”, Funktsion. analiz i ego pril., 23:2 (1989), 79–80 | MR | Zbl

[5] Blyashke V., Vvedenie v geometriyu tkanei, M., 1959

[6] Pavlov M. V., “Gamiltonov formalizm slabo-nelineinykh sistem gidrodinamiki”, TMF, 73:2 (1987), 316–320 | MR

[7] Ferapontov E. V., “Preobrazovaniya po resheniyu i ikh invarianty”, Differents. uravneniya, 1989, no. 7, 1256–1265 | MR | Zbl

[8] Miyaoka R., “Compact Dupin Hupersurfaces with three principal curvatures”, Math. Z., 187 (1984), 433–452 | DOI | MR | Zbl

[9] Pinkal U., “Dupin Hupersurfaces”, Math. Ann., 270 (1985), 427–440 | DOI | MR | Zbl

[10] Vasilev A. M., “Sistemy trekh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri trekh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh (lokalnaya teoriya)”, Matem. sb., 70(112) (1966), 457–480

[11] Gvazava D. K., “Ob obschem integrale odnogo klassa nelineinykh uravnenii i ego primenenii”, Tr. Tbil. matem. in-ta, 90 (1988), 68–75 | MR | Zbl

[12] Gvazava D. K., “Globalnoe reshenie zadachi Koshi dlya odnogo kvazilineinogo vyrozhdayuschegosya giperbolicheskogo uravneniya metodom kharakteristik”, Differents. uravneniya, 17:1 (1981), 39–45 | MR | Zbl

[13] Gvazava D. K., “O nelineinykh uravneniyakh vtorogo poryadka s polnymi kharakteristicheskimi sistemami i kharakteristicheskie zadachi dlya nikh”, Tr. Tbil. matem. in-ta, 87 (1987), 45–53 | MR | Zbl

[14] Mukminov F. Kh., “O vypryamlenii kharakteristik kvazilineinogo uravneniya vtorogo poryadka”, TMF, 75:1 (1988), 18–25 | MR | Zbl

[15] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl

[16] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[17] Kagan V. F., Osnovy teorii poverkhnostei, Gostekhizdat, M., 1947 | MR

[18] Rashevskii P. K., Kurs differentsialnoi geometrii, M.–L., 1950

[19] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova - Uizema”, DAN, 270:4 (1983), 781–785 | MR | Zbl

[20] Tsarev S. P., “Integrirovanie uravnenii khromatografii prokhozhdeniya mnogokomponentnoi smesi veschestv cherez sorbiruyuschuyu sredu dlya sluchaya lengmyurovskoi izotermy sorbtsii”, Tomograficheskie metody v fiziko-tekhnicheskikh izmereniyakh, Sb. nauchnykh tr. VNIIFTRI, Moskva, 1985