@article{SM_1992_71_1_a4,
author = {E. I. Khukhro},
title = {Groups and {Lie} rings admitting an almost regular automorphism on prime order},
journal = {Sbornik. Mathematics},
pages = {51--63},
year = {1992},
volume = {71},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a4/}
}
E. I. Khukhro. Groups and Lie rings admitting an almost regular automorphism on prime order. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a4/
[1] Higman G., “Groups and rings which have automorphisms without non-trivial fixed elements”, J. London Math. Soc., 32 (1956), 321–334 | DOI | MR
[2] Kreknin V. A., “O razreshimosti algebr Li s regulyarnym avtomorfizmom konechnogo perioda”, DAN SSSR, 150:3 (1963), 467–469 | MR | Zbl
[3] Kreknin V. A., Kostrikin A. I., “Ob algebrakh Li s regulyarnym avtomorfizmom”, DAN SSSR, 149:2 (1963), 249–251 | MR | Zbl
[4] Kourovskaya tetrad (nereshennye voprosy teorii grupp), Institut matematiki SO AN SSSR, Novosibirsk, 1982
[5] Hartley B., Meixner T., “Periodic groups in which the centralizer of an involution has bounded order”, J. Algebra, 64 (1980), 285–291 | DOI | MR | Zbl
[6] Khukhro E. I., “Nilpotentnye periodicheskie gruppy s pochti regulyarnym avtomorfizmom prostogo poryadka”, Algebra i logika, 26:4 (1987), 502–517 | MR | Zbl
[7] Khukhro E. I., “Konechnye $p$-gruppy, dopuskayuschie avtomorfizm poryadka $p$ s malym chislom nepodvizhnykh tochek”, Matem. zametki, 38:5 (1985), 652–657 | MR | Zbl
[8] Hartley B., Meixner T., “Finite soluble groups containing an element of prime order whose centralizer is small”, Arch. Math., 36 (1981), 211–213 | DOI | MR | Zbl
[9] Meixner T., Über endliche Gruppen mit Autotnorphismen, deren Fixpuktgruppen beschränkt sind, Dissertation, Erlangen; Nürnberg, 1979 | Zbl
[10] Huppert B., Blackburn N., Finite groups, II, Springer, Berlin, 1982 | MR