Some results on solvability of ordinary linear differential equations in locally convex spaces
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 29-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x=Ax$, $x(0)=x_0$, with respect to functions $x\colon\mathbf R\to E$. It is proved that if $E\in\Gamma$, then $E\times\mathbf R^A\in\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Fréchet spaces, each not isomorphic to $\mathbf R^\infty$, does not belong to $\Gamma$.
@article{SM_1992_71_1_a2,
     author = {S. A. Shkarin},
     title = {Some results on solvability of ordinary linear differential equations in locally convex spaces},
     journal = {Sbornik. Mathematics},
     pages = {29--40},
     year = {1992},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a2/}
}
TY  - JOUR
AU  - S. A. Shkarin
TI  - Some results on solvability of ordinary linear differential equations in locally convex spaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 29
EP  - 40
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a2/
LA  - en
ID  - SM_1992_71_1_a2
ER  - 
%0 Journal Article
%A S. A. Shkarin
%T Some results on solvability of ordinary linear differential equations in locally convex spaces
%J Sbornik. Mathematics
%D 1992
%P 29-40
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a2/
%G en
%F SM_1992_71_1_a2
S. A. Shkarin. Some results on solvability of ordinary linear differential equations in locally convex spaces. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a2/

[1] Millionschikov V. M., “K teorii differentsialnykh uravnenii $\frac{dx}{dt}=f(x,t)$ v lokalno vypuklykh prostranstvakh”, DAN SSSR, 131:3 (1960), 510–514

[2] Millionschikov V. M., “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57(99) (1962), 385–406

[3] Godunov A. N., Durkin A. P., “O differentsialnykh uravneniyakh v lineinykh topologicheskikh prostranstvakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1969, no. 4, 39–47 | MR | Zbl

[4] Godunov A. N., “O teoreme Peano v banakhovykh prostranstvakh”, Funktsion. analiz i ego pril., 9:1 (1975), 59–60 | MR | Zbl

[5] Smolyanov O. G., “Lineinye predstavleniya evolyutsionnykh differentsialnykh uravnenii”, DAN SSSR, 221:6 (1975), 1288–1291 | MR | Zbl

[6] Lobanov S. G., “O razreshimosti lineinykh obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1980, no. 2, 3–7 | MR | Zbl

[7] Lobanov S. G., “Primer nenormiruemogo prostranstva Freshe, v kotorom lyuboi nepreryvnyi lineinyi operator imeet eksponentu”, UMN, 34:4 (1979), 201–202 | MR | Zbl

[8] Bonet J., Pérez Carreras P., Barrelled locally convex spaces, Math. studies, 131, North-Holland, 1987 | MR | Zbl

[9] Kuratovskii K., Topologiya, t. 2, Mir, M., 1969 | MR

[10] Godunov A. N., “O lineinykh differentsialnykh uravneniyakh v lokalno vypuklykh prostranstvakh”, Vestn. MGU. Ser. 1. Matem., mekh., 1974, no. 5, 31–39 | MR | Zbl