Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 259-269
Voir la notice de l'article provenant de la source Math-Net.Ru
Theorems are proved that reduce the proof of the Brauer conjecture for finite groups $G$ with a $p$-soluble centralizer of a $p$-element to the evaluation of the minimum of a suitable positive definite quadratic form, whose matrix is given in terms of the Cartan matrix of
a $p$-block of a group of simpler structure than $G$.
@article{SM_1992_71_1_a15,
author = {P. G. Gres'},
title = {Reduction theorems for the {Brauer} conjecture on the number of characters in a~$p$-block},
journal = {Sbornik. Mathematics},
pages = {259--269},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/}
}
P. G. Gres'. Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 259-269. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/