Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 259-269

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved that reduce the proof of the Brauer conjecture for finite groups $G$ with a $p$-soluble centralizer of a $p$-element to the evaluation of the minimum of a suitable positive definite quadratic form, whose matrix is given in terms of the Cartan matrix of a $p$-block of a group of simpler structure than $G$.
@article{SM_1992_71_1_a15,
     author = {P. G. Gres'},
     title = {Reduction theorems for the {Brauer} conjecture on the number of characters in a~$p$-block},
     journal = {Sbornik. Mathematics},
     pages = {259--269},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/}
}
TY  - JOUR
AU  - P. G. Gres'
TI  - Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 259
EP  - 269
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/
LA  - en
ID  - SM_1992_71_1_a15
ER  - 
%0 Journal Article
%A P. G. Gres'
%T Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block
%J Sbornik. Mathematics
%D 1992
%P 259-269
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/
%G en
%F SM_1992_71_1_a15
P. G. Gres'. Reduction theorems for the Brauer conjecture on the number of characters in a~$p$-block. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 259-269. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a15/