New methods for the classification of the simple modular Lie algebras
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 235-245

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of simple modular Lie algebras $L$ over an algebraically closed field of characteristic $p>7$. Let $T$ denote an optimal torus in some $p$-envelope $L_p$. We prove: If $Q(L,T)=L$ and $C_L(T)$ is a Cartan subalgebra, then $L$ is classical. If $Q(L,T)\ne L$ and $C_L(T)$ distinguishes the roots of $T$ on $L/Q(L,T)\ne 0$, then $L$ is of Cartan type. The methods give new proofs even for the restricted simple Lie algebras.
@article{SM_1992_71_1_a13,
     author = {H. Strade},
     title = {New methods for the classification of the simple modular {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {235--245},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a13/}
}
TY  - JOUR
AU  - H. Strade
TI  - New methods for the classification of the simple modular Lie algebras
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 235
EP  - 245
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a13/
LA  - en
ID  - SM_1992_71_1_a13
ER  - 
%0 Journal Article
%A H. Strade
%T New methods for the classification of the simple modular Lie algebras
%J Sbornik. Mathematics
%D 1992
%P 235-245
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a13/
%G en
%F SM_1992_71_1_a13
H. Strade. New methods for the classification of the simple modular Lie algebras. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 235-245. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a13/