On harmonic approximation in the $C^1$-norm
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 183-207

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is established for the possibility of approximation by harmonic functions and, in particular, by harmonic polynomials in the $C^1$-norm on compact subsets of $\mathbf R^n$. This criterion, which is in terms of harmonic $C^1$-capacity in $\mathbf R^n$, yields a natural analog to the theorem of Vitushkin on rational approximation in terms of analytic capacity.
@article{SM_1992_71_1_a11,
     author = {P. V. Paramonov},
     title = {On harmonic approximation in the $C^1$-norm},
     journal = {Sbornik. Mathematics},
     pages = {183--207},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - On harmonic approximation in the $C^1$-norm
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 183
EP  - 207
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/
LA  - en
ID  - SM_1992_71_1_a11
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T On harmonic approximation in the $C^1$-norm
%J Sbornik. Mathematics
%D 1992
%P 183-207
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/
%G en
%F SM_1992_71_1_a11
P. V. Paramonov. On harmonic approximation in the $C^1$-norm. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 183-207. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/