On harmonic approximation in the $C^1$-norm
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 183-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion is established for the possibility of approximation by harmonic functions and, in particular, by harmonic polynomials in the $C^1$-norm on compact subsets of $\mathbf R^n$. This criterion, which is in terms of harmonic $C^1$-capacity in $\mathbf R^n$, yields a natural analog to the theorem of Vitushkin on rational approximation in terms of analytic capacity.
@article{SM_1992_71_1_a11,
     author = {P. V. Paramonov},
     title = {On harmonic approximation in the $C^1$-norm},
     journal = {Sbornik. Mathematics},
     pages = {183--207},
     year = {1992},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - On harmonic approximation in the $C^1$-norm
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 183
EP  - 207
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/
LA  - en
ID  - SM_1992_71_1_a11
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T On harmonic approximation in the $C^1$-norm
%J Sbornik. Mathematics
%D 1992
%P 183-207
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/
%G en
%F SM_1992_71_1_a11
P. V. Paramonov. On harmonic approximation in the $C^1$-norm. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 183-207. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a11/

[1] Verdera J., “$C^m$-approximations by solutions of elliptic equations and Calderon-Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[3] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | Zbl

[4] Deny J., “Systèmes totaux de functions harmoniques”, Ann. Inst. Fourier, 1 (1949), 103–113 | MR

[5] Mateu J., Orobitg J., Lipschitz approximation by harmonic functions and some applications to spectral sinthesis, Preprint, Univ. Auton. de Barcelona, 1988

[6] O'Farrell A. G., “Rational approximations in Lipschitz norms, II”, Proc. Royal Irish Acad., 79A (1979), 104–114

[7] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[8] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[9] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[10] Vitushkin A. G., “Primer mnozhestv polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, DAN SSSR, 127:2 (1959), 246–249 | Zbl

[11] Nguyen X. U., “An extremal problem on singular integrals”, Amer. J. of Math., 102 (1980), 279–290 | DOI | MR | Zbl

[12] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71(113):4 (1966), 503–514

[13] Gonchar A. A., “O priblizhenii nepreryvnykh funktsii garmonicheskimi”, DAN SSSR, 154:3 (1964), 503–507

[14] Shaginyan A. A., “Ob approksimatsii nepreryvnykh vektornykh polei potentsialnymi”, DAN Arm. SSR, 76:3 (1983), 106–108 | MR | Zbl

[15] Rao N. V., “Approximation by Gradients”, J. of Approxim. Theory, 12:1 (1974), 52–60 | DOI | MR | Zbl

[16] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[17] Walsh J. L., “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35 (1929), 499–544 | DOI | Zbl

[18] Král J., “Some extension results concerning harmonic functions”, J. London Math. Soc. (2), 28:1 (1983), 62–70 | DOI | MR | Zbl