Tangent fields on deformations of complex spaces
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 163-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of sheaves of graded Lie algebras associated with a flat mapping of complex spaces are established. In particular, for a minimal versal deformation the tangent algebra of a fiber defines a linearization of the algebra of liftable fields on the base, which in turn enables one to find the discriminant of the deformation and its modular subspace. A criterion is obtained for the nilpotency of the tangent algebra of the germ of a hypersurface with a unique singular point. It is proved that in the algebra of liftable fields on the base of a minimal versal deformation of such a germ there always exists a basis with symmetric coefficient matrix.
@article{SM_1992_71_1_a10,
     author = {V. P. Palamodov},
     title = {Tangent fields on deformations of complex spaces},
     journal = {Sbornik. Mathematics},
     pages = {163--182},
     year = {1992},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - Tangent fields on deformations of complex spaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 163
EP  - 182
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/
LA  - en
ID  - SM_1992_71_1_a10
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T Tangent fields on deformations of complex spaces
%J Sbornik. Mathematics
%D 1992
%P 163-182
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/
%G en
%F SM_1992_71_1_a10
V. P. Palamodov. Tangent fields on deformations of complex spaces. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 163-182. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/

[1] Saito K., “Theory of logarithmic forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo. Sec. 1A, 27:2 (1980), 265–291 | MR | Zbl

[2] Looijenga E., Isolated singular points of complete intersections, Notes in Math., 77, 1984 | MR | Zbl

[3] Palamodov V. P., “Moduli in versal defromation of complex spaces”, Lect. Notes in Math., 1978, no. 683, 74–115 | DOI | MR | Zbl

[4] Laudal O. A., Pfister G., “Local moduli problem and singularities”, Lect. Notes in Math., 1310, 1988 | MR | Zbl

[5] Greuel G.-M., Looijenga E., “The dimension of smoothing components”, Duke Math. J., 52:1 (1985), 263–272 | DOI | MR | Zbl

[6] Arnol'd V. I., “Wave front evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29 (1976), 557–582 | DOI | MR

[7] Arnold V. I., “Osobennosti sistem luchei”, UMN, 38:2 (1983), 77–147 | MR

[8] Zakalyukin V. M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funktsion. analiz, 10:2 (1976), 67–70 | MR

[9] Givental A. B., “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannykh s prostymi osobennostyami funktsii”, Funktsion. analiz, 14 (1980), 4–14 | MR | Zbl

[10] Saito K., Yano T., Sekiguchi J., “On a certain generator system of the ring of invariants of a finite reflection group”, Comm. Algebra, 8:4 (1980), 373–408 | DOI | MR | Zbl

[11] Scheja G., Wiebe H., “Uber-Derivationen von lokalen analytischen Algebren”, Symposia Math., 11 (1973), 161–192 | MR | Zbl

[12] Palamodov V. P., “Deformatsii kompleksnykh prostranstv”, UMN, 31:3 (1976), 129–194 | MR | Zbl

[13] Palamodov V. P., “Deformatsii kompleksnykh prostranstv”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1986, 123–221 | MR

[14] Flenner H., Über Deformationen holomorpher Abbildungen, Habilitationsschrift, Osnabruck, 1978

[15] Palamodov V. Ya., “Kasatelnyi kompleks analiticheskogo prostranstva”, Tr. sem. im. Petrovskogo, 1978, no. 4, 173–226 | MR | Zbl

[16] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, t. 2, Mir, M., 1982, s. 501–849 | MR

[17] Varchenko A. N., Givental A. B., “Otobrazhenie periodov i formy peresechenii”, Funktsion. analiz, 16:2 (1982), 7–20 | MR | Zbl

[18] Burbaki N., Elementy matematiki. Kommutativnaya algebra, Mir, M., 1971, s. 1–684 | MR

[19] Banica C., Stanasila O., Méthodes algèbriques dans la thèorie globate des espaces complexes, v. 2, Gauthier-Villars, 1977 | Zbl

[20] Hartshorne R., Residues and Duality, Lect. Notes in Math., 20, 1966 | MR | Zbl