Tangent fields on deformations of complex spaces
Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 163-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of sheaves of graded Lie algebras associated with a flat mapping of complex spaces are established. In particular, for a minimal versal deformation the tangent algebra of a fiber defines a linearization of the algebra of liftable fields on the base, which in turn enables one to find the discriminant of the deformation and its modular subspace. A criterion is obtained for the nilpotency of the tangent algebra of the germ of a hypersurface with a unique singular point. It is proved that in the algebra of liftable fields on the base of a minimal versal deformation of such a germ there always exists a basis with symmetric coefficient matrix.
@article{SM_1992_71_1_a10,
     author = {V. P. Palamodov},
     title = {Tangent fields on deformations of complex spaces},
     journal = {Sbornik. Mathematics},
     pages = {163--182},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - Tangent fields on deformations of complex spaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 163
EP  - 182
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/
LA  - en
ID  - SM_1992_71_1_a10
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T Tangent fields on deformations of complex spaces
%J Sbornik. Mathematics
%D 1992
%P 163-182
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/
%G en
%F SM_1992_71_1_a10
V. P. Palamodov. Tangent fields on deformations of complex spaces. Sbornik. Mathematics, Tome 71 (1992) no. 1, pp. 163-182. http://geodesic.mathdoc.fr/item/SM_1992_71_1_a10/