Limit passage in quasilinear parabolic equations with weakly converging coefficients, and the asymptotic behavior of solutions of the Cauchy problem
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 467-484

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic closeness as $t\to+\infty$ (for each $x\in R^n$) is proved for solutions of two distinct Cauchy problems for quasilinear parabolic equations under the condition that certain limit means of the difference of the coefficients and of the difference of the initial functions are equal to zero. This proof is based on reducing the initial problem to a problem on the passage to the limit in a sequence of equations with weakly converging coefficients which is also of independent interest.
@article{SM_1991_70_2_a8,
     author = {V. L. Kamynin},
     title = {Limit passage in quasilinear parabolic equations with weakly converging coefficients, and the asymptotic behavior of solutions of the {Cauchy} problem},
     journal = {Sbornik. Mathematics},
     pages = {467--484},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a8/}
}
TY  - JOUR
AU  - V. L. Kamynin
TI  - Limit passage in quasilinear parabolic equations with weakly converging coefficients, and the asymptotic behavior of solutions of the Cauchy problem
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 467
EP  - 484
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a8/
LA  - en
ID  - SM_1991_70_2_a8
ER  - 
%0 Journal Article
%A V. L. Kamynin
%T Limit passage in quasilinear parabolic equations with weakly converging coefficients, and the asymptotic behavior of solutions of the Cauchy problem
%J Sbornik. Mathematics
%D 1991
%P 467-484
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a8/
%G en
%F SM_1991_70_2_a8
V. L. Kamynin. Limit passage in quasilinear parabolic equations with weakly converging coefficients, and the asymptotic behavior of solutions of the Cauchy problem. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 467-484. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a8/