On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 445-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that if $\{\varphi_n(x)\}$ is a complete orthonormal system of bounded functions and $\varepsilon>0$, then there exists a measurable set $E\subset[0,1]$ with $|E|>1-\varepsilon$ such that 1) for any function $f(x)\in L[0,1]$ there exists a function $g(x)\in L^1[0,1]$ with $g(x)=f(x)$ on $E$ and such that the Fourier series of $g(x)$ in the system $\{\varphi_n(x)\}$ converges in the $L^1$-metric; and 2) there exists a subsequence of natural numbers $m_k\nearrow\infty$ such that for any function $f(x)\in L^1[0,1]$ there exists a function $g(x)\in L^1[0,1]$ such that $g(x)=f(x)$ for $x\in E$, $\displaystyle\lim_{k\to\infty}\sum\limits_{n=1}^{m_k}\alpha_n(g)\varphi_n(x)=g(x)$ almost everywhere on $[0,1]$, and $\{\alpha_n(g)\}\in l_p$ for all $p>2$, where $\displaystyle\alpha_n(g)=\int_0^1g(x)\varphi_n(x)\,dx$, $n=1,2\dots$ .
@article{SM_1991_70_2_a7,
     author = {M. G. Grigoryan},
     title = {On convergence of {Fourier} series in complete orthonormal systems in the $L^1$-metric and almost everywhere},
     journal = {Sbornik. Mathematics},
     pages = {445--466},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a7/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 445
EP  - 466
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a7/
LA  - en
ID  - SM_1991_70_2_a7
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere
%J Sbornik. Mathematics
%D 1991
%P 445-466
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a7/
%G en
%F SM_1991_70_2_a7
M. G. Grigoryan. On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 445-466. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a7/

[1] Luzin N. N., “K osnovnoi teoreme integralnogo ischisleniya”, Matem. sb., 28 (70) (1912), 266–294

[2] Menshov D. E., “Sur la représentation des fonctions mesurabls par des séries trigonométriques”, Matem. sb., 9(51) (1941), 667–692 | MR | Zbl

[3] Menshov D. E., “O ryadakh Fure ot summiruemykh funktsii”, Tr. MMO, 1, 1932, 5–38 | MR | Zbl

[4] Talalyan A. A., “Polnye sistemy bezuslovnoi skhodimosti v slabom smysle”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 713–720

[5] Oskolkov K. I., “Ravnomernyi modul nepreryvnosti summiruemykh funktsii na mnozhestvakh polozhitelnoi mery”, DAN SSSR, 229:2 (1976), 304–306 | MR | Zbl

[6] Arutyunyan F. G., “O ryadakh po sisteme Khaara”, DAN ArmSSR, 42:3 (1966), 134–140 | MR | Zbl

[7] Kashin B. S., Kosheleva G. G., “Ob odnom podkhode k teoremam ob ispravlenii”, Vestn. MGU. Ser. matem., mekh., 1988, no. 4, 6–8 | MR

[8] Kheladze Sh. V., “Skhodimost ryadov Fure pochti vsyudu i v smysle metriki $L$”, Matem. sb., 107(149) (1978), 245–258 | MR | Zbl

[9] Gulisashvili A. B., “Ob osobennostyakh summiruemykh funktsii”, Zap. nauch. seminarov LOMI, 113 (1981), 76–96 | MR | Zbl

[10] Gulisashvili A. B., “Perestanovki, rasstanovki znakov i skhodimost posledovatelnostei operatorov”, Zap. nauch. seminarov LOMI, 107 (1982), 46–70 | MR | Zbl

[11] Ulyanov P. L., “Reshennye i nereshennye problemy teorii trigonometricheskikh i ortogonalnykh ryadov”, UMN, 29:1 (1964), 3–68

[12] Ketznelson Y., “On a theorem of Menchoff”, Proc. Amer. Math. Soc., 53:2 (1975), 396–398 | DOI | MR

[13] Olevskii A. M., “Suschestvovanie funktsii s neustranimymi osobennostyami Karlemana”, DAN SSSR, 238:4 (1978), 796–799 | MR | Zbl

[14] Kashin B. S., “Ob odnoi polnoi ortonormirovannoi sisteme”, Matem. sb., 99(141) (1976), 356–365 | Zbl