Estimates of the spectrum of compact pseudodifferential operators in unbounded domains
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 431-443
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the spectrum of compact selfadjoint pseudodifferential operators with matrix symbol in unbounded sets in Euclidean space. Two-sided bounds for the spectrum are obtained by the variational method. Additional regularity assumptions on the symbol lead to a formula for the spectral asymptotics with a remainder term estimate.
@article{SM_1991_70_2_a6,
author = {A. S. Andreev},
title = {Estimates of the spectrum of compact pseudodifferential operators in unbounded domains},
journal = {Sbornik. Mathematics},
pages = {431--443},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a6/}
}
A. S. Andreev. Estimates of the spectrum of compact pseudodifferential operators in unbounded domains. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 431-443. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a6/