Time cones and a functional model on a Riemann surface
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 399-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional and triangular models of commuting systems of bounded linear operators are constructed. A method is given to construct dilations of multiparameter contraction semigroups. The subsequent analysis of these dilations within the scope of the Lax–Phillips scattering scheme leads to functional models on Riemann surfaces.
@article{SM_1991_70_2_a5,
     author = {V. A. Zolotarev},
     title = {Time cones and a~functional model on {a~Riemann} surface},
     journal = {Sbornik. Mathematics},
     pages = {399--429},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a5/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - Time cones and a functional model on a Riemann surface
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 399
EP  - 429
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a5/
LA  - en
ID  - SM_1991_70_2_a5
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T Time cones and a functional model on a Riemann surface
%J Sbornik. Mathematics
%D 1991
%P 399-429
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a5/
%G en
%F SM_1991_70_2_a5
V. A. Zolotarev. Time cones and a functional model on a Riemann surface. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 399-429. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a5/

[1] Livshits M. S., Yantsevich A. A., Teoriya operatornykh uzlov v gilbertovykh prostranstvakh, Izd-vo Khark. un-ta, Kharkov, 1971 | MR

[2] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[3] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[4] Laks P., Fillips R., Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979

[5] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov”, Tr. sedmoi zimnei shkoly (Drogobych), Izd-vo TsEMI AN SSSR, M., 1976

[6] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[7] Livshits M. S., “Kommutiruyuschie nesamosopryazhennye operatory i porozhdaemye imi resheniya sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Soobsch. AN GSSR, 91:2 (1978), 281–284 | MR | Zbl

[8] Livšic M. S., “A method for constructing, triangular canonical models of commuting operators based connections with algebraic curves”, Int. Equations and Operator Theory, 3/4 (1980), 489–507 | DOI | MR | Zbl

[9] Livšic M. S., “Cayley - Hamilton theorem, vector bundles and divisors of commuting operators”, Int. Equations and Operator Theory, 6 (1983), 250–273 | DOI | MR | Zbl

[10] Livšic M. S., “Commuting nonselfadjoint operators and collective motions of systems”, Lecture Notes in Mathematics, 1272, Springer-Verlag, 1987, 1–38 | MR

[11] Waksman L. L., “Harmonic analysis of multi parameter semigroups of contractions”, Lecture Notes in Mathematics, 1272, Springer-Verlag, 1987, 39–114 | MR

[12] Zolotarev V. A., “Spektralnyi analiz nesamosopryazhennykh kommutativnykh sistem operatorov i nelineinye differentsialnye uravneniya”, Teoriya funktsii i funktsion. analiz, i ikh pril., Resp. sb., no. 40, Kharkov, 1983, 68–71 | MR | Zbl

[13] Zolotariov V. A., Les modeles triangulaires et extensions commutatives des systemes d'operateurs, Preprint. Lab. d'analyse numerique, Universite Paris VI, 1983

[14] Zolotariov V. A., Les modeles triangulaires et fouctionels des colligations commutatives unitaires metriques, Preprint. Lab. d'analyse numerique, Universite Paris VI, 1983

[15] Zolotarev V. A., “Modelnye predstavleniya kommutativnykh sistem lineinykh operatorov”, Funktsion. analiz i ego pril., 22:1 (1988), 66–68 | MR | Zbl

[16] Pavlov B. S., Fedorov S. I., “O garmonicheskom analize na rimanovoi poverkhnosti”, DAN SSSR, 308:2 (1989), 269–273

[17] Pavlov B. S., Fedorov S. I., “Garmonicheskii analiz na rimanovoi poverkhnosti roda I”, Algebra i analiz, 1:2 (1989), 132–168 | MR | Zbl

[18] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 180–208

[19] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[20] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[21] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo IL, M., 1960

[22] Nikol'skii N. K., Vasyunin V. I., Unified approach to function models and the trascription problem, Preprint. E-5, LOMI, Leningrad, 1986 | MR

[23] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl