Prym varieties of branched coverings and nonlinear equations
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 367-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An efficacious realization is presented of finite-gap solutions of the Veselov–Novikov equation expressed in terms of the theta function of Prym varieties of double coverings of algebraic curves with two branch points. For the given Prym mapping equations are obtained which locally solve a problem of Riemann–Schottky type, and a local Torelli theorem is proved.
@article{SM_1991_70_2_a3,
     author = {I. A. Taimanov},
     title = {Prym varieties of branched coverings and nonlinear equations},
     journal = {Sbornik. Mathematics},
     pages = {367--384},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Prym varieties of branched coverings and nonlinear equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 367
EP  - 384
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/
LA  - en
ID  - SM_1991_70_2_a3
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Prym varieties of branched coverings and nonlinear equations
%J Sbornik. Mathematics
%D 1991
%P 367-384
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/
%G en
%F SM_1991_70_2_a3
I. A. Taimanov. Prym varieties of branched coverings and nonlinear equations. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 367-384. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/

[1] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega - de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[3] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[4] Date E., Jimbo M., Kashiwara M., Miwa T., Transformation Groups for Soliton Equations. IV: A New Hierarchy of Soliton Equations of $KP$-Type, Preprint RIMS, No 359, RIMS, Kyoto, 1981 | MR

[5] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[6] Dubrovin B. A., Krichever I. M., Novikov S. P., “Uravnenie Shredingera v magnitnom pole i rimanovy poverkhnosti”, DAN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[7] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[8] Taimanov I. A., “Effektivizatsiya teta-funktsionalnykh formul dlya dvumernykh potentsialnykh operatorov Shredingera konechnozonnykh na odnom urovne energii”, DAN SSSR, 285:5 (1985), 1067–1070 | MR | Zbl

[9] Taimanov I. A., “Ob analoge gipotezy Novikova v probleme tipa Rimana - Shottki dlya mnogoobrazii Prima”, DAN SSSR, 293:5 (1987), 1065–1068 | MR | Zbl

[10] Fay J. D., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, 1973 | MR | Zbl

[11] Manakov S. V., “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5 (1976), 245–246 | MR | Zbl

[12] Sasaki R., “Modular forms vanishing at the reducible points of the Siegel upperhalf space”, J. reine und angew. Math., 345 (1983), 111–121 | MR | Zbl

[13] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[14] Mumford D., “Prym varieties, I”, Contributions to Analysis. A collection of Papers Dedicated to Lipman Bers, Academic Press, N. Y., 1974, 325–350 | MR

[15] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Publ. Math. IHES, 1969, no. 36, 75–109 | MR | Zbl

[16] Beauville A., “Prym Varieties and the Schottky Problem”, Inventiones math., 41 (1977), 149–196 | DOI | MR | Zbl

[17] Dubrovin B. A., “Uravnenie Kadomtseva - Petviashvili i sootnosheniya mezhdu periodami golomorfnykh differentsialov na rimanovykh poverkhnostyakh”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 1015–1028 | MR | Zbl

[18] Shiota T., “Characterization of Jacobian varieties in terms of solition equations”, Inventiones math., 83 (1986), 333–382 | DOI | MR | Zbl

[19] Shabat B. V., Vvedenie v kompleksnyi analiz, ch. II, Nauka, M., 1985 | MR

[20] Dalalyan S. G., “Mnogoobraziya Prima dvulistnogo nakrytiya giperellipticheskoi krivoi s dvumya tochkami vetvleniya”, Matem. sb., 98(140) (1975), 255–267 | Zbl

[21] Boiti M., Leon J. J.-P., Pempinelli F., “Canonical and noncanonical recursion operators in multidimensions”, Studies in Appl. Math., 78 (1988), 1–19 | MR | Zbl

[22] Natanzon S. M., “Nesingulyarnye konechnozonnye dvumernye operatory Shredingera i primiany veschestvennykh krivykh”, Funktsion. analiz i ego pril., 22:1 (1988), 79–80 | MR | Zbl

[23] Taimanov I. A., “O dvumernykh konechnozonnykh potentsialnykh operatorakh Shredingera”, Funktsion. analiz i ego pril., 24:1 (1990), 86–87 | MR | Zbl

[24] Krichever I. M., “Spektralnaya teoriya dvumernogo periodicheskogo operatora Shredingera”, UMN, 44:2 (1989), 121–184 | MR | Zbl