Prym varieties of branched coverings and nonlinear equations
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 367-384

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficacious realization is presented of finite-gap solutions of the Veselov–Novikov equation expressed in terms of the theta function of Prym varieties of double coverings of algebraic curves with two branch points. For the given Prym mapping equations are obtained which locally solve a problem of Riemann–Schottky type, and a local Torelli theorem is proved.
@article{SM_1991_70_2_a3,
     author = {I. A. Taimanov},
     title = {Prym varieties of branched coverings and nonlinear equations},
     journal = {Sbornik. Mathematics},
     pages = {367--384},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Prym varieties of branched coverings and nonlinear equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 367
EP  - 384
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/
LA  - en
ID  - SM_1991_70_2_a3
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Prym varieties of branched coverings and nonlinear equations
%J Sbornik. Mathematics
%D 1991
%P 367-384
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/
%G en
%F SM_1991_70_2_a3
I. A. Taimanov. Prym varieties of branched coverings and nonlinear equations. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 367-384. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a3/