Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 355-366

Voir la notice de l'article provenant de la source Math-Net.Ru

An extensive new class of solutions is obtained for the $SU(1,1)$ and $SU(2)$ duality equations in terms of the Riemann $\theta$-functions for a Riemann surface depending on the dynamical variables. The dynamics in the resulting solutions is thus determined by the motion of the surface in the moduli manifold. The axisymmetric stationary case is discussed, for which the solutions reduce to solutions of the vacuum Einstein equations. In the degenerate case, the class of solutions is believed to include all known solutions of the instanton and monopole type.
@article{SM_1991_70_2_a2,
     author = {D. A. Korotkin},
     title = {Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions},
     journal = {Sbornik. Mathematics},
     pages = {355--366},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/}
}
TY  - JOUR
AU  - D. A. Korotkin
TI  - Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 355
EP  - 366
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/
LA  - en
ID  - SM_1991_70_2_a2
ER  - 
%0 Journal Article
%A D. A. Korotkin
%T Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
%J Sbornik. Mathematics
%D 1991
%P 355-366
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/
%G en
%F SM_1991_70_2_a2
D. A. Korotkin. Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 355-366. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/