Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 355-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extensive new class of solutions is obtained for the $SU(1,1)$ and $SU(2)$ duality equations in terms of the Riemann $\theta$-functions for a Riemann surface depending on the dynamical variables. The dynamics in the resulting solutions is thus determined by the motion of the surface in the moduli manifold. The axisymmetric stationary case is discussed, for which the solutions reduce to solutions of the vacuum Einstein equations. In the degenerate case, the class of solutions is believed to include all known solutions of the instanton and monopole type.
@article{SM_1991_70_2_a2,
     author = {D. A. Korotkin},
     title = {Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions},
     journal = {Sbornik. Mathematics},
     pages = {355--366},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/}
}
TY  - JOUR
AU  - D. A. Korotkin
TI  - Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 355
EP  - 366
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/
LA  - en
ID  - SM_1991_70_2_a2
ER  - 
%0 Journal Article
%A D. A. Korotkin
%T Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
%J Sbornik. Mathematics
%D 1991
%P 355-366
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/
%G en
%F SM_1991_70_2_a2
D. A. Korotkin. Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 355-366. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a2/

[1] V. V. Zharinov, Tvistory i kalibrovochnye polya, Mir, M., 1983 | MR

[2] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR

[3] Vainshtein A. I., Zakharov V. I., Novikov V. A., Shifman M. A., “Instantonnaya azbuka”, UFN, 136:4 (1982), 553–592 | MR

[4] Kapranov M. M., Manin Yu. I., “Tvistornoe preobrazovanie i algebro-geometricheskie konstruktsii reshenii uravnenii teorii polya”, UMN, 41:5 (1986), 85–107 | MR | Zbl

[5] Belavin A. A., Zakharov V. E., “Mnogomernyi metod obratnoi zadachi rasseyaniya i uravneniya dualnosti dlya polya Yanga - Millsa”, Pisma v ZhETF, 25:12 (1977), 603–607

[6] Atiyah M. F., Hitchin N. J., Drinfeld V. G., Manin Yu. I., “Construction of instantons”, Phys. Lett., 65A:3 (1978), 185–187 | MR | Zbl

[7] Korepin V. E., Shatashvili S. L., “Trekhinstantonnoe reshenie”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 331–346 | MR

[8] Forgacs P., Horvath Z., Palla L., “Towards complete integrability of the self-duality equations”, Phys. Rev. D., D23:8 (1981), 1876–1879 | DOI | MR

[9] Forgacs P., Multimonopoles and the Riemann-Hilbert problem, Non-linear equations in classical and quantum field theory, Springer, Berlin etc., 1985 | MR

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[11] Matveev V. B., “Darboux transformation and explicit solutions of the Kadomtzev-Petviashvily equation, depending on functional parameters”, Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl

[12] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 75 (1978), 1953–1972 | MR

[13] Belinskii V. A., Zakharov V. E., “Statsionarnye gravitatsionnye solitony s aksialnoi simmetriei”, ZhETF, 77:1 (1989), 3–19 | MR

[14] Korotkin D. A., “Konechnozonnye resheniya statsionarnogo aksialno-simmetrichnogo uravneniya Einshteina v vakuume”, TMF, 77:1 (1988), 25–41 | MR

[15] Korotkin D. A., Matveev V. B., “Algebro-geometricheskie resheniya uravnenii gravitatsii”, Algebra i analiz, 1:2 (1989), 77–102 | MR | Zbl

[16] Korotkin D. A., Matveev V. B., Finite-gap integration of the equations having $U-V$ pairs with a variable spectral parameter, Some topics on inverse problems, World Scientific, Singapore etc., 1988 | MR | Zbl

[17] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[18] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[19] Bobenko A. I., “Veschestvennye algebro-geometricheskie resheniya uravneniya Landau-Lifshitsa v teta-funktsiyakh Prima”, Funktsion. analiz i ego pril., 19:1 (1985), 6–19 | MR | Zbl

[20] Bikbaev R. F., Bobenko A. I., Its A. R., Uravnenie Landau - Lifshitsa. Teoriya tochnykh reshenii. I, II, Preprint DonFTI-84-67(81, 82), DonFTI, Donetsk, 1984

[21] Neugebauer G., Kramer D., “Einstein-Maxwell solitons”, J. Phys. A., 16 (1983), 1927–1936 | DOI | MR

[22] Its A. R., “Teorema Liuvillya i metod obratnoi zadachi”, Zap. nauchn. sem. LOMI, 133 (1984), 113–125 | MR | Zbl

[23] Krichever I. M., “Ratsionalnye resheniya uravnenii dualnosti dlya polei Yanga-Millsa”, Funktsion. analiz i ego pril., 13:4 (1979), 81–82 | MR

[24] Cherednik I. V., “O konechnozonnykh resheniyakh uravnenii dualnosti nad $S^4$ i dvumernykh relyativistski-invariantnykh sistem”, DAN SSSR, 246:3 (1979), 575–578 | MR

[25] Sanchez N., Exact solutions in gauge theory, general relativity and their supersymmetric. Extensions, Geometric Aspects of the Einstein Equations and Integrable Systems, Springer, Berlin, 1985 | MR

[26] Burtsev S. P., Zakharov V. E., Mikhailov A. V., “Metod obratnoi zadachi s peremennym spektralnym parametrom”, TMF, 70:3 (1987), 323–342 | MR

[27] Kramer D., Shtefani Kh., Mak-Kallum M., Kherlt E., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[28] Xanthopoulos B. C., Classical aspects of Yang-Mills theories, Solutions of Eisntein's Equations: Techniques and Results, Springer, Berlin, 1984 | MR