The one-dimensional inverse scattering problem for the wave equation
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 557-572 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A constructive method is given for solving the inverse scattering problem for the wave equation on the line and half-line. The slowness function is assumed to have a derivative everywhere except at a finite number of points, and both it and its derivative are assumed to be functions of bounded variation. In addition, the slowness $n(x)$ is required to tend to 1 sufficiently rapidly as $x\to\infty$. In this case the slowness function can be reconstructed from the reflection coefficient.
@article{SM_1991_70_2_a12,
     author = {N. I. Grinberg},
     title = {The one-dimensional inverse scattering problem for the wave equation},
     journal = {Sbornik. Mathematics},
     pages = {557--572},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/}
}
TY  - JOUR
AU  - N. I. Grinberg
TI  - The one-dimensional inverse scattering problem for the wave equation
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 557
EP  - 572
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/
LA  - en
ID  - SM_1991_70_2_a12
ER  - 
%0 Journal Article
%A N. I. Grinberg
%T The one-dimensional inverse scattering problem for the wave equation
%J Sbornik. Mathematics
%D 1991
%P 557-572
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/
%G en
%F SM_1991_70_2_a12
N. I. Grinberg. The one-dimensional inverse scattering problem for the wave equation. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 557-572. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/

[1] Levitan B. M., Obratnye zadachi Shturma - Liuvillya, Nauka, M., 1984 | MR

[2] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969

[3] Faddeev L. D., “Obratnaya zadacha v kvantovoi teorii rasseyaniya, II”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, M., 1974, 93–180 | MR

[4] Krein M. G., “Ob opredelenii potentsiala chastits po ee $S$-funktsii”, DAN SSSR, 105:3 (1955), 433–436 | MR | Zbl

[5] Blagoveschenskii A. S., “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Tr. MIAN, 115 (1971), 28–38 | Zbl

[6] Belishev M. I., “Obratnaya zadacha rasseyaniya ploskikh voln dlya odnogo klassa sloistykh sred”, Zap. nauch. sem. LOMI, 78 (1978), 30–53 | MR | Zbl

[7] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[8] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony, Mir, M., 1985 | MR