The one-dimensional inverse scattering problem for the wave equation
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 557-572

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive method is given for solving the inverse scattering problem for the wave equation on the line and half-line. The slowness function is assumed to have a derivative everywhere except at a finite number of points, and both it and its derivative are assumed to be functions of bounded variation. In addition, the slowness $n(x)$ is required to tend to 1 sufficiently rapidly as $x\to\infty$. In this case the slowness function can be reconstructed from the reflection coefficient.
@article{SM_1991_70_2_a12,
     author = {N. I. Grinberg},
     title = {The one-dimensional inverse scattering problem for the wave equation},
     journal = {Sbornik. Mathematics},
     pages = {557--572},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/}
}
TY  - JOUR
AU  - N. I. Grinberg
TI  - The one-dimensional inverse scattering problem for the wave equation
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 557
EP  - 572
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/
LA  - en
ID  - SM_1991_70_2_a12
ER  - 
%0 Journal Article
%A N. I. Grinberg
%T The one-dimensional inverse scattering problem for the wave equation
%J Sbornik. Mathematics
%D 1991
%P 557-572
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/
%G en
%F SM_1991_70_2_a12
N. I. Grinberg. The one-dimensional inverse scattering problem for the wave equation. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 557-572. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a12/