Lower bounds for the functional dimension of the solution space of hypoelliptic operators
Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 341-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lower bounds are established for the functional dimension of the solution space of hypoelliptic operators with constant coefficients. As a corollary of these estimates a criterion is found for the ellipticity of a differential operator in terms of the functional dimension.
@article{SM_1991_70_2_a1,
     author = {G. G. Kazaryan and V. N. Markaryan},
     title = {Lower bounds for the~functional dimension of the solution space of hypoelliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {341--353},
     year = {1991},
     volume = {70},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_2_a1/}
}
TY  - JOUR
AU  - G. G. Kazaryan
AU  - V. N. Markaryan
TI  - Lower bounds for the functional dimension of the solution space of hypoelliptic operators
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 341
EP  - 353
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_2_a1/
LA  - en
ID  - SM_1991_70_2_a1
ER  - 
%0 Journal Article
%A G. G. Kazaryan
%A V. N. Markaryan
%T Lower bounds for the functional dimension of the solution space of hypoelliptic operators
%J Sbornik. Mathematics
%D 1991
%P 341-353
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_70_2_a1/
%G en
%F SM_1991_70_2_a1
G. G. Kazaryan; V. N. Markaryan. Lower bounds for the functional dimension of the solution space of hypoelliptic operators. Sbornik. Mathematics, Tome 70 (1991) no. 2, pp. 341-353. http://geodesic.mathdoc.fr/item/SM_1991_70_2_a1/

[1] Pontrjagin L., Schnirelman L., “Sur une propiété metrique de la dimension”, Ann. Math., 33 (1921), 156–162 | DOI | MR

[2] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948

[3] Kolmogorov A. N., “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh prostranstvakh”, UMN, 10:1 (1955), 192–193

[4] Vitushkin A. G., “K trinadtsatoi probleme Gilberta”, DAN SSSR, 95:4 (1955), 701–704

[5] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, XIV:2(96) (1959), 3–86 | MR

[6] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, vyp. 4, M., 1961

[7] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[8] Tanaka S., “The $\varepsilon$-entropy of some class of harmonic functions”, Proc. Japan Acad., 39:2 (1936), 85–88 | DOI | MR

[9] Kömura Y., “Die Nuklearität der Lösungsräume der Hypoellptischen Gleichungen”, Funcialay Ekvacioj, 9 (1966), 313–324 | MR

[10] Kolmogorov A. N., “O lineinoi razmernosti topologicheskikh vektornykh prostranstv”, DAN SSSR, 120:2 (1958), 239–242 | MR

[11] Margaryan V. N., Kazaryan G. G., “O funktsionalnoi razmernosti prostranstva reshenii gipoellipticheskikh uravnenii”, Matem. sb., 115(157) (1981), 614–631 | MR | Zbl

[12] Margaryan V. N., “Funktsionalnaya razmernost prostranstv reshenii nekotorykh klassov gipoellipticheskikh uravnenii”, Izv. AN ArmSSR. Matematika, 17:3 (1982), 182–201 | MR

[13] Zielezny Z., “On the functional dimension of the space of solutions of $\mathrm{PDE}$”, J. Diff. Equat., 18:2 (1975), 340–345 | DOI | MR | Zbl

[14] Langenbruch M., “On the functional dimension of solution spaces of Hypoeliiptic partial differential operators”, Math. Ann., 272 (1985), 217–229 | DOI | MR | Zbl

[15] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 2, Mir, M., 1986

[16] Langenbruch M., “$P$-Functionale und Raudwerte zu hypoelliptischen Differentialoperatoren”, Math. Ann., 239 (1979), 313–324 | DOI | MR

[17] Mikhailov V. P., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 91 (1967), 59–80

[18] Cattabriga L., “Uno spazio funzionale conesso ad una classe di operatori ipoellitici”, Inst. Naz. Alta Mat. Bologna, 7 (1971), 547–558 | MR | Zbl

[19] Kazaryan G. G., “O gipoellipticheskikh polinomakh”, DAN SSSR, 214:5 (1974), 1016–1019 | Zbl