Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 143-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author studies the weighted shift operator $(T_af)(x)=\rho^{1/2}(x)a(\alpha^{-1}x)f(\alpha^{-1}x)$, acting in the space $L_2(X,\mu;H)$ of functions on a compact metric space $X$ with values in a separable Hilbert space $H$. Here $\alpha$ is a homeomorphism of $X$ with a dense set of nonperiodic points, the measure $\mu$ is quasi-invariant with respect to $\alpha$, $\rho=\dfrac{d\mu\alpha^{-1}}{d\mu}$, and $a$ is a continuous function on $X$ with values in the algebra of bounded operators on $H$. It is established that the dynamic spectrum of the extension $\hat\alpha(x,v)=(\alpha x,a(x)v)$, $x\in X$, $v\in H$ can be obtained from the spectrum $\sigma(T_a)$ in $L_2$ by taking the logarithm of $|\sigma(T_a)|$. Using the Riesz projections for $T_a$, the spectral subbundles for $\hat\alpha$ are described. In the case that $a$ takes compact values, the dynamic spectrum can be computed in terms of the exact Lyapunov exponents of the cocycle constructed from $a$ and $\alpha$, corresponding to measures ergodic for $\alpha$ on $X$.
@article{SM_1991_70_1_a9,
     author = {Yu. D. Latushkin and A. M. Stepin},
     title = {Weighted shift operator, spectral theory of linear extensions, and the {Multiplicative} {Ergodic} {Theorem}},
     journal = {Sbornik. Mathematics},
     pages = {143--163},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/}
}
TY  - JOUR
AU  - Yu. D. Latushkin
AU  - A. M. Stepin
TI  - Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 143
EP  - 163
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/
LA  - en
ID  - SM_1991_70_1_a9
ER  - 
%0 Journal Article
%A Yu. D. Latushkin
%A A. M. Stepin
%T Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
%J Sbornik. Mathematics
%D 1991
%P 143-163
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/
%G en
%F SM_1991_70_1_a9
Yu. D. Latushkin; A. M. Stepin. Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 143-163. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/

[1] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977 | MR | Zbl

[2] Karlovich Yu. I., Kravchenko V. G., Litvinchuk G. S., “Teoriya Netera singulyarnykh integralnykh operatorov so sdvigom”, Izv. VUZov. Matem., 1983, no. 4, 3–27 | MR | Zbl

[3] Antonevich A. B., “O dvukh metodakh issledovaniya obratimosti operatorov iz $C$-algebr, porozhdennykh dinamicheskimi sistemami”, Matem. sb., 124 (166) (1984), 3–23 | MR | Zbl

[4] Anosov D. V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[5] Stepin A. M., “O gomologicheskom uravnenii teorii dinamicheskikh sistem”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Izd-vo Yaroslavl. un-ta, Yaroslavl, 1983, 106–117

[6] Nordgren E. A., “Composition operators in Hilbert spaces”, Lect. Notes Math., 693 (1978), 37–64 | DOI | MR

[7] Hoover T., Lambert A., Quinn J., “The Markov proceses, determined by a weighted composition operators”, Stud. Math., 72 (1982), 225–235 | MR

[8] Gorin E. A., Kitover A. K., “The spectrum of an endomorphism in a commutative Banach algebra”, Lect. Notes Math., 1043 (1984), 244–248

[9] Sacker R. J., Sell G. R., “Existence of dichotomies and invariant splitting for linear differential systems, I”, J. Diff. Eqns., 15 (1974), 429–458 | DOI | MR | Zbl

[10] Sacker R. J., Sell G. R., “A spectral theory for linear differential systems”, J. Diff. Eqns., 27 (1978), 320–358 | DOI | MR | Zbl

[11] Johnson R. A., Palmer K., Sell G. R., “Ergodic properties of linear dynamical systems”, SIAM J. Math. Anal., 18:1 (1987), 1–33 | DOI | MR | Zbl

[12] Lebedev A. V., “O teoremakh tipa Vinera v skreschennykh proizvedeniyakh i algebrakh, assotsiirovannykh s avtomorfizmami”, DAN BSSR, 30:6 (1986), 493–495 | MR | Zbl

[13] Lebedev A. V., “Ob obratimosti i kompaktnosti elementov v algebrakh, assotsiirovannykh s avtomorfizmami”, DAN BSSR, 30:7 (1986), 589–592 | MR | Zbl

[14] Lebedev A. V., O nekotorykh $C$-metodakh, primenyaemykh pri issledovanii algebr, assotsiirovannykh s avtomorfizmami i endomorfizmami, Dep. v VINITI 27.04.87, No5351-V87

[15] Karlovich Yu. I., “Lokalno-traektornyi metod izucheniya obratimosti v $C$-algebrakh operatorov s diskretnymi gruppami sdvigov”, DAN SSSR, 299:3 (1988), 546–550 | Zbl

[16] Karlovich Yu. I., Kravchenko V. G., “Sistemy singulyarnykh integralnykh uravnenii so sdvigom”, Matem. sb., 116(158) (1981), 87–110 | MR

[17] Mather J., “Characterization of Anosov diffeomorphisms”, Indag. Math., 30 (1968), 479–483 | MR

[18] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[19] Ruelle D., “Characteristics exponents and invariant manifolds in Hilbert space”, Ann. of Math., 1982, 243–290 | DOI | MR | Zbl

[20] Palis J., Pugh C. C., Fifty problems in dynamical systems, Lect. Notes Math., 468, 1974 | MR

[21] Millionschikov V. M., “Statisticheski pravilnye sistemy”, Matem. sb., 75(117) (1968), 140–151 | Zbl

[22] Kitover A. K., “O spektre operatorov v idealnykh prostranstvakh”, Zap. nauch. seminarov LOMI, 65 (1976), 196–198 | MR | Zbl

[23] Lebedev A. V., “Ob obratimosti elementov v $C$-algebrakh, porozhdennykh dinamicheskimi sistemami”, UMN, 34:4 (1979), 199–200 | MR | Zbl

[24] Gokhber I. Ts., Laiterer Yu., “Faktorizatsiya operator-funktsii otnositelno kontura, 1”, Math. Nachr., 52 (1972), 259–282 | DOI | MR | Zbl

[25] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[26] Johnson R. A., “The reccurent Hill's equations”, J. Diff. Eqns., 46 (1982), 165–194 | DOI

[27] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19 (1968), 179–210 | Zbl

[28] Millionschikov V. M., “Kriterii ustoichivosti veroyatnostnogo spektra lineinykh sistem differentsialnykh uravnenii s rekurrentnymi koeffitsientami i kriterii pochti privodimosti sistem s pochti periodicheskimi koeffitsientami”, Matem. sb., 78(120) (1969), 179–202

[29] Chicone C., Swanson R., “Spectral theory for linearizations of dynamical systems”, J. Diff. Eqns., 40 (1981), 155–167 | DOI | MR | Zbl

[30] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[31] Oseledets V. I., “L-Entropiya i antidinamo-teorema”, VI mezhdunarodnyi simpozium po teor. informatsii, Tez. dokl. Ch. III, AN SSSR, Moskva-Tashkent, 1984, 162–163

[32] Mané R., “Quasi-Anosov diffeomorphisms and hyperbolic manifolds”, Trans. Amer. Math. Soc., 229 (1977), 351–370 | DOI | MR | Zbl

[33] Antonevich A. B., “Ob operatorakh, porozhdennykh lineinymi rasshireniyami diffeomorfizmov”, DAN BSSR, 243:4 (1978), 825–828 | MR | Zbl

[34] Chicone C., Swanson R., “The spectrum of the adjoint representation and the hyperbolicity of dynamical systems”, J. Diff. Eqns., 36 (1980), 28–39 | DOI | MR | Zbl

[35] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga na topologicheskoi markovskoi tsepi”, Funkts. analiz i ego pril., 22:4 (1988), 86–87 | MR

[36] Latushkin Yu. D., “Spektralnyi radius operatorov vzveshennogo sdviga i pokazateli Lyapunova”, Respubl. nauchn. konf. «Differents. i integralnye uravn. i ikh pril.», Tezisy dokl. Ch. 1, Izd-vo Odesskogo un-ta, Odessa, 1987, 152–153

[37] Latushkin Yu. D., “O giperbolichnosti i kvazigiperbolichnosti lineinykh rasshirenii”, XIII Vsesoyuznaya shkola po teorii operatorov, Tezisy dokl., Izd-vo Kuibyshevsk. un-ta, Kuibyshev, 1988, 113