Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 143-163

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the weighted shift operator $(T_af)(x)=\rho^{1/2}(x)a(\alpha^{-1}x)f(\alpha^{-1}x)$, acting in the space $L_2(X,\mu;H)$ of functions on a compact metric space $X$ with values in a separable Hilbert space $H$. Here $\alpha$ is a homeomorphism of $X$ with a dense set of nonperiodic points, the measure $\mu$ is quasi-invariant with respect to $\alpha$, $\rho=\dfrac{d\mu\alpha^{-1}}{d\mu}$, and $a$ is a continuous function on $X$ with values in the algebra of bounded operators on $H$. It is established that the dynamic spectrum of the extension $\hat\alpha(x,v)=(\alpha x,a(x)v)$, $x\in X$, $v\in H$ can be obtained from the spectrum $\sigma(T_a)$ in $L_2$ by taking the logarithm of $|\sigma(T_a)|$. Using the Riesz projections for $T_a$, the spectral subbundles for $\hat\alpha$ are described. In the case that $a$ takes compact values, the dynamic spectrum can be computed in terms of the exact Lyapunov exponents of the cocycle constructed from $a$ and $\alpha$, corresponding to measures ergodic for $\alpha$ on $X$.
@article{SM_1991_70_1_a9,
     author = {Yu. D. Latushkin and A. M. Stepin},
     title = {Weighted shift operator, spectral theory of linear extensions, and the {Multiplicative} {Ergodic} {Theorem}},
     journal = {Sbornik. Mathematics},
     pages = {143--163},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/}
}
TY  - JOUR
AU  - Yu. D. Latushkin
AU  - A. M. Stepin
TI  - Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 143
EP  - 163
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/
LA  - en
ID  - SM_1991_70_1_a9
ER  - 
%0 Journal Article
%A Yu. D. Latushkin
%A A. M. Stepin
%T Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem
%J Sbornik. Mathematics
%D 1991
%P 143-163
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/
%G en
%F SM_1991_70_1_a9
Yu. D. Latushkin; A. M. Stepin. Weighted shift operator, spectral theory of linear extensions, and the Multiplicative Ergodic Theorem. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 143-163. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a9/