On linear topological classification of spaces on continuous functions in the topology of pointwise convergence
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 129-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of when the spaces $C_p(X)$ and $C_p(Y)$ of continuous real-valued functions on $X$ and $Y$ in the topology of pointwise convergence are linearly homeomorphic ($X$ and $Y$ are then called $l$-equivalent) is studied. The concept of Euclidean-resolvable compactum is introduced; it greatly generalizes the concept of a polyhedron, and it is proved that every Euclidean-resolvable space of dimension $n\geqslant 1$ is $l$-equivalent to the Euclidean cube $I^n$. It is established that if the dimensions of noncompact $CW$-spaces of countable weight coincide, then these spaces are $l$-equivalent. A complete zero-dimensional non-$\sigma$-compact metric space is $l$-equivalent to the space of irrational numbers. An elementary geometric technique based on factorizations is developed, making it possible to demonstrate $l$-equivalence.
@article{SM_1991_70_1_a8,
     author = {A. V. Arkhangel'skii},
     title = {On linear topological classification of spaces on continuous functions in the topology of pointwise convergence},
     journal = {Sbornik. Mathematics},
     pages = {129--142},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a8/}
}
TY  - JOUR
AU  - A. V. Arkhangel'skii
TI  - On linear topological classification of spaces on continuous functions in the topology of pointwise convergence
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 129
EP  - 142
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a8/
LA  - en
ID  - SM_1991_70_1_a8
ER  - 
%0 Journal Article
%A A. V. Arkhangel'skii
%T On linear topological classification of spaces on continuous functions in the topology of pointwise convergence
%J Sbornik. Mathematics
%D 1991
%P 129-142
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a8/
%G en
%F SM_1991_70_1_a8
A. V. Arkhangel'skii. On linear topological classification of spaces on continuous functions in the topology of pointwise convergence. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a8/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Arkhangelskii A. V., “O lineinykh gomeomorfizmakh prostranstv funktsii”, DAN SSSR, 264:6 (1982), 1289–1292 | MR

[3] Arkhangelskii A. V., “Prostranstva funktsii v topologii potochechnoi skhodimosti. Ch. I”, Obschaya topologiya. Prostranstva funktsii i razmernost, Izd-vo MGU, M., 1985, 3–66 | MR

[4] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989 | MR

[5] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1984

[6] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[7] Gulko S. P., “O gomeomorfizmakh prostranstv nepreryvnykh funktsii”, Tezisy Bakinskoi mezhdunarodnoi topologicheskoi konferentsii, ch. II, Baku, 1987, 91

[8] Gulko S. P., Khmyleva T. E., “Kompaktnost ne sokhranyaetsya otnosheniem $t$-ekvivalentnosti”, Matem. zametki, 39:6 (1986), 895–903 | MR | Zbl

[9] Dranishnikov A. N., “Absolyutnye $F$-znachnye retrakty i prostranstva funktsii v topologii potochechnoi skhodimosti”, Sib. matem. zhurn., 27:3 (1986), 74–86 | MR | Zbl

[10] Kadets M. I., “Dokazatelstvo topologicheskoi ekvivalentnosti vsekh separabelnykh beskonechnomernykh prostranstv Banakha”, Funktsion. analiz i ego pril., 1:1 (1967), 53–62

[11] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966 | MR

[12] Lefshets S., Algebraicheskaya topologiya, M., 1947

[13] Pavlovskii D. S., “O prostranstvakh nepreryvnykh funktsii”, DAN SSSR, 253:1 (1980), 38–41 | MR | Zbl

[14] Pavlovskii D. S., “O prostranstvakh, imeyuschikh lineino gomeomorfnye prostranstva nepreryvnykh funktsii v topologii potochechnoi skhodimosti”, UMN, 37:2 (1982), 185–186 | MR | Zbl

[15] Pelchinskii A., Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya, Mir, M., 1970

[16] Pestov V. G., “Sovpadenie razmernosti $\dim$ $l$-ekvivalentnykh topologicheskikh prostranstv”, DAN SSSR, 266:3 (1982), 553–556 | MR | Zbl

[17] Schepin E. V., “Topologiya predelnykh prostranstv neschetnykh obratnykh spektrov”, UMN, 31:5 (1976), 191–226 | MR | Zbl

[18] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[19] Arhangel'skii A. V., “A survey of $C_p$-theory”, Q. and A. in General Topology, 5 (1987), 1–109 | MR

[20] Arhangel'skii A. V., Čoban M. M., “The extension property of Tychonoff spaces and generalized retrates”, Compt. rend. Acad. bulg. Sci., 41:2 (1988), 5–7 | MR

[21] Bears J., de Groot J., “An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces”, Comment. math. Univ. carol., 29:3 (1988), 577–595 | MR

[22] Borges C. J. R., “On stratifiable spaces”, Pacific J. Math., 17:1 (1966), 1–116 | MR

[23] Marciszewski W. A., “A function $C(K)$ not weaky homeomorphic to $C(K)\times C(K)$”, Universytet Warszawski Institut Matematyki, 11/86, Warszawa, 1986, 1–15

[24] Michael E., “On $k$-spaces, $k_{R}$-spaces and $k(X)$”, Pacific J. Math., 47:2 (1973), 487–498 | MR | Zbl

[25] Valov V., “Linear topological classification of ortain function spaces”, Trans. Amer. Math. Soc., 67 (1989), 28–48