On the uniform quasiasymptotics of the solutions of hyperbolic equations
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 109-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniform quasiasymptotics as $t\to\infty$ of the solutions of the second mixed problem and of the Cauchy problem for a linear hyperbolic second order equation are studied in the scale of self-similar functions. The method of investigation is based on the construction, in terms of a given self-similar function, of a special convolution operator that reduces the study of the quasiasymptotics to that of the power scale case discussed earlier.
@article{SM_1991_70_1_a7,
     author = {V. Zh. Dumanyan},
     title = {On the uniform quasiasymptotics of the solutions of hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a7/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - On the uniform quasiasymptotics of the solutions of hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 109
EP  - 128
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a7/
LA  - en
ID  - SM_1991_70_1_a7
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T On the uniform quasiasymptotics of the solutions of hyperbolic equations
%J Sbornik. Mathematics
%D 1991
%P 109-128
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a7/
%G en
%F SM_1991_70_1_a7
V. Zh. Dumanyan. On the uniform quasiasymptotics of the solutions of hyperbolic equations. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a7/