Enhanced triangulated categories
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 93-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution is given to the problem of describing a triangulated category generated by a finite number of objects. It requires the notion of “enhancement” of a triangulated category, by means of the complexes RHom.
@article{SM_1991_70_1_a6,
     author = {A. I. Bondal and M. M. Kapranov},
     title = {Enhanced triangulated categories},
     journal = {Sbornik. Mathematics},
     pages = {93--107},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a6/}
}
TY  - JOUR
AU  - A. I. Bondal
AU  - M. M. Kapranov
TI  - Enhanced triangulated categories
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 93
EP  - 107
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a6/
LA  - en
ID  - SM_1991_70_1_a6
ER  - 
%0 Journal Article
%A A. I. Bondal
%A M. M. Kapranov
%T Enhanced triangulated categories
%J Sbornik. Mathematics
%D 1991
%P 93-107
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a6/
%G en
%F SM_1991_70_1_a6
A. I. Bondal; M. M. Kapranov. Enhanced triangulated categories. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a6/

[1] Verdier J.-L., “Catégories dérivées”, Lect. Notes in Math., 1977, no. 569, 262–311 | DOI | Zbl

[2] Hartshorne R., Residues and duality, Lect. Notes in Math., no. 20, 1966 | MR

[3] Mei Dzh., “Geometriya integrirovannykh prostranstv petel”, Bordman Dzh., Fogt R. Gomotopicheski invariantnye algebraicheskie struktury na topologicheskikh prostranstvakh, Mir, M., 1977 | MR

[4] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[5] Maklein S., Gomologiya, Mir, M., 1966

[6] Kapranov M. M., “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent Math., 92 (1988), 479–508 | DOI | MR | Zbl

[7] O'Brien N., Toledo D., Tong Y. I., “Trace and characterictic classes of coherent sheaves”, Amer. J. Math., 103, 225–252 | DOI

[8] Spaltenstein N., “Resolutions of unbounded complexes”, Composito Math., 65 (1988), 121–154 | MR | Zbl

[9] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR, 53:1 (1989), 25–44 | MR

[10] Baer D., “Tilting sheaves in representation theory of algebras”, Manuscripta Math., 60:3 (1988), 323–347 | DOI | MR | Zbl

[11] Kraines D. A., “Higher Massey products”, Trans. AMS, 124:3 (1966), 431–439 | DOI | MR

[12] Uaitkhad Dzh. K. G., Noveishie dostizheniya v teorii gomotopii, Mir, M., 1971

[13] Cohen J. M., “The decomposition of stable homotopy”, Ann. Math., 87 (1968), 305–320 | DOI | MR | Zbl

[14] Quillen D. G., “Higher algebraic $K$-theory”, Lect. Notes in Math., 1973, no. 341, 85–147 | DOI | MR | Zbl

[15] Hinich V. A., Schechtman V. V., “The geometry of a category of complexes and algebraic $K$-theory”, Duke Math. J., 52:2 (1985), 399–430 | DOI | MR | Zbl

[16] Kapranov M. M., Proizvodnye kategorii kogerentnykh puchkov na odnorodnykh prostranstvakh, Dis. ... kand. fiz.-matem. nauk, MIAN, M., 1988

[17] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR

[18] Gelfand S. I., Manin Yu. I., Vvedenie v gomologicheskuyu algebru, Nauka, M., 1989 | Zbl