The $\bar\partial$ Neumann problem for smooth functions and distributions
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 79-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the following $\bar\partial$-Neumann problem for functions: given a function $\varphi$ on the boundary of a domain $D\subset\mathbf C^n$ with boundary of class $C^\infty$, find a harmonic function $F$ in $D$ such that $\bar\partial_nF=\varphi$ on $\partial D$ (where $\bar\partial_nF$ is the normal part of the differential form $\bar\partial F$). It is shown that with the homogeneous boundary condition $\bar\partial_nF=0$, the only solutions of this problem are holomorphic functions. Solvability of this problem is proved in strictly pseudoconvex domains if the function (or distribution) $\varphi$ is orthogonal to holomorphic functions $f$ for integration over $\partial D$. An integral formula for the solution of the $\bar\partial$-Neumann problem in the ball is given. The proof uses known results on solvability of the $\bar\partial$-Neumann problem for forms of type $(p,q)$ for $q>0$.
@article{SM_1991_70_1_a5,
     author = {A. M. Kytmanov},
     title = {The $\bar\partial$ {Neumann} problem for smooth functions and distributions},
     journal = {Sbornik. Mathematics},
     pages = {79--92},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/}
}
TY  - JOUR
AU  - A. M. Kytmanov
TI  - The $\bar\partial$ Neumann problem for smooth functions and distributions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 79
EP  - 92
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/
LA  - en
ID  - SM_1991_70_1_a5
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%T The $\bar\partial$ Neumann problem for smooth functions and distributions
%J Sbornik. Mathematics
%D 1991
%P 79-92
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/
%G en
%F SM_1991_70_1_a5
A. M. Kytmanov. The $\bar\partial$ Neumann problem for smooth functions and distributions. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/

[1] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy - Riemann complex, Ann. Math. Studies, no. 75, Princeton Univ. Press, 1972 | MR | Zbl

[2] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR

[3] Aronov A. M., Kytmanov A. M., “O golomorfnosti funktsii, predstavimykh integralom Martinelli - Bokhnera”, Funktsion. analiz i ego pril., 9:3 (1975), 83–84 | MR | Zbl

[4] Kytmanov A. M., Aizenberg L. A., “O golomorfnosti nepreryvnykh funktsii, predstavimykh integralom Martinelli - Bokhnera”, Izv. AN ArmSSR. Ser. matem., 13:2 (1978), 158–169 | MR | Zbl

[5] Romanov A. V., “Skhodimost iteratsii operatora Martinelli - Bokhnera”, DAN SSSR, 242:4 (1978), 780–783 | MR | Zbl

[6] Roitberg Ya. A., “O znacheniyakh na granitse oblasti obobschennykh reshenii ellipticheskikh uravnenii”, Matem. sb., 86(128) (1971), 248–267 | MR | Zbl

[7] Straube E. L., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Sc. norm. super. Pisa Cl. Sci., 11:4 (1984), 559–591 | MR | Zbl

[8] Chirka E. M., “Analiticheskoe predstavlenie $\mathrm{CR}$-funktsii”, Matem. sb., 98. (140) (1975), 591–623 | Zbl

[9] Egorov Yu. V., Shubin M. A., Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1988

[10] Aizenberg L. A., “Polinomy, ortogonalnye golomorfnym funktsiyam mnogikh kompleksnykh peremennykh, a analog teoremy Rissov”, DAN SSSR, 199:2 (1971), 255–257 | MR | Zbl

[11] Shaimkulov B. A., Ob odnom analoge teoremy F. i M. Rissov v ${\mathbf{C}}^2$, Preprint No46M, In-t fiziki SO AN SSSR, Krasnoyarsk, 1988, S. 1–17

[12] Dautov Sh. A., “O formakh, ortogonalnykh golomorfnym funktsiyam pri integrirovanii po granitse strogo psevdovypuklykh oblastei”, DAN SSSR, 203:1 (1972), 16–18 | MR | Zbl

[13] Rosay J.-P., “Equation de Lewy-Resolutibilite globale de l'equation $\partial_{\mathrm{B}}u=f$ sur la frontiere de domaines faiblement pseudoconvexes de $\mathbf{C}^2$ (ou $\mathbf{C}^n$)”, Duke Math. J., 49:1 (1982), 121–128 | DOI | MR

[14] Boas H. P., Shaw Meichi, “Sobolev estimates for the Lewy operator on weakly pseudoconvex boundary”, Math. Ann., 274:2 (1986), 221–231 | DOI | MR | Zbl

[15] Kohn J. J., “Global regularity for $\overline{\partial}$ on weakly pseudo-convex manifolds”, Trans. Amer. Math. Soc., 181 (1973), 273–292 | DOI | MR | Zbl

[16] Kohn J. J., “Subellipticity of the $\overline{\partial}$-Neumann problem on pseudo-convex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI | MR | Zbl

[17] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 23–124 | MR

[18] Rang R. M., “The $\overline{\partial}$-Neumann operator on the unit ball in $\mathbf{C}^n$”, Math. Ann., 266:4 (1984), 449–456 | DOI | MR | Zbl

[19] Harvey F. R., Polking J. C., “The $\overline{\partial}$-Neumann kernel in the unit ball in $\mathbf{C}^n$”, Complex anal. several variables, Proc. Symp. Several Compl. Var., Providence. R. I., 1984, 117–136 | MR | Zbl

[20] Kimura K., “Kernels for the $\overline{\partial}$-Neumann problem on the unit ball in $\mathbf{C}^2$”, Commun. Part. Diff. Equat., 12:9 (1987), 967–1028 | DOI | MR | Zbl