The $\bar\partial$ Neumann problem for smooth functions and distributions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 79-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the following $\bar\partial$-Neumann problem for functions: given a function $\varphi$ on the boundary of a domain $D\subset\mathbf C^n$ with boundary of class $C^\infty$, find a harmonic function $F$ in $D$ such that $\bar\partial_nF=\varphi$ on $\partial D$ (where $\bar\partial_nF$  is the normal part of the differential form $\bar\partial F$). It is shown that with the homogeneous boundary condition $\bar\partial_nF=0$, the only solutions of this problem are holomorphic functions. Solvability of this problem is proved in strictly pseudoconvex domains if the function (or distribution) $\varphi$ is orthogonal to holomorphic functions $f$ for integration over $\partial D$. An integral formula for the solution of the $\bar\partial$-Neumann problem in the ball is given. The proof uses known results on solvability of the $\bar\partial$-Neumann problem for forms of type $(p,q)$ for $q>0$.
			
            
            
            
          
        
      @article{SM_1991_70_1_a5,
     author = {A. M. Kytmanov},
     title = {The $\bar\partial$ {Neumann} problem for smooth functions and distributions},
     journal = {Sbornik. Mathematics},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/}
}
                      
                      
                    A. M. Kytmanov. The $\bar\partial$ Neumann problem for smooth functions and distributions. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a5/
