On necessary conditions for odd optimability of high speed prbblem for the linear on control systems
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 47-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a study of singular optimal trajectories by the chronological calculus methods developed in the school of R. V. Gamkrelidze.
@article{SM_1991_70_1_a3,
     author = {A. I. Tret'yak},
     title = {On necessary conditions for odd optimability of high speed prbblem for the linear on control systems},
     journal = {Sbornik. Mathematics},
     pages = {47--63},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a3/}
}
TY  - JOUR
AU  - A. I. Tret'yak
TI  - On necessary conditions for odd optimability of high speed prbblem for the linear on control systems
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 47
EP  - 63
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a3/
LA  - en
ID  - SM_1991_70_1_a3
ER  - 
%0 Journal Article
%A A. I. Tret'yak
%T On necessary conditions for odd optimability of high speed prbblem for the linear on control systems
%J Sbornik. Mathematics
%D 1991
%P 47-63
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a3/
%G en
%F SM_1991_70_1_a3
A. I. Tret'yak. On necessary conditions for odd optimability of high speed prbblem for the linear on control systems. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a3/

[1] Agrachev A. A., “Kvadratichnye otobrazheniya v geometricheskoi teorii upravleniya”, Probl. geometrii, Itogi nauki i tekhn., 20, VINITI, M., 1988, 111–206 | MR

[2] Agrachev A. A., Vakhrameev S. A., Gamkrelidze R. V., “Differentsialno-geometricheskie i teoretiko-gruppovye metody v teorii optimalnogo upravleniya”, Probl. geometrii, Itogi nauki i tekhn., 14, VINITI, M., 1983, 3–56 | MR

[3] Agrachev A. A., Gamkrelidze R. V., “Eksponentsialnoe predstavlenie potokov i khronologicheskoe ischislenie”, Matem. sb., 107(149) (1978), 467–532 | MR | Zbl

[4] Agrachev A. A., Gamkrelidze R. V., “Khronologicheskie algebry i nestatsionarnye vektornye polya”, Probl. geometrii, Itogi nauki i tekhn., 11, VINITI, M., 1980, 135–176 | MR

[5] Agrachev A. A., Gamkrelidze R. V., Sarychev A. V., Lokalnye invarianty gladkikh upravlyaemykh sistem, Dep. v VINITI AN SSSR 4.10.86, No7020–V86, M., 1986, 32 pp.

[6] Agrachev A. A., Sarychev A. V., “Filtratsii algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, DAN SSSR, 295:4 (1987), 777–781 | MR | Zbl

[7] Tretyak A. I., “O neobkhodimykh usloviyakh optimalnosti proizvolnogo poryadka v zadache bystrodeistviya”, Matem. sb., 132(174) (1987), 261–274 | MR

[8] Tretyak A. I., “O neobkhodimykh usloviyakh optimalnosti nechetnogo poryadka”, Resp. nauch. konf. «Differentsialnye i integralnye uravneniya i ikh prilozheniya» 22–24 sentyabrya 1987 g., Tez. dokl. Ch. 2., Izd-vo Odessk. un-ta, Odessa, 1987, 110–111

[9] Shafarevich I. R., Osnovy algebraicheskoi geometrii. T. 1. Algebraicheskie mnogoobraziya v proektivnom prostranstve, Nauka, M., 1988 | MR

[10] Gamkrelidze R. V., “Exponential representation of solutions of ordinary differential equations”, Proc. Equadiff. V Conf. Prague 1977, Springer-Verlag, Berlin e. a., 1978, 118–129 | MR

[11] Hermes H., “Control systems which generate decomposable Lie algebras”, J. Diff. Equations, 44:2 (1982), 166–187 | DOI | MR | Zbl

[12] Krener A. J., “The high order maximal principle and its application to singular extremals”, SIAM J. Contr. and Optim., 15:2 (1977), 256–293 | DOI | MR | Zbl

[13] Lamriabhi-Lagarrigue F., “Sur les conditions necessaires d'optimalité du deuxième et troisième ordre dans les problèmes de commande optimale singliere”, Lect. Notes Contr. and Inform. Sci., 63 (1983), 525–541 | DOI

[14] Sussmann H. J., “Lie brackets and local controllability: a sufficient condition for scalar-input systems”, SIAM J. Contr. and Optim., 21:5 (1983), 686–713 | DOI | MR | Zbl

[15] Sussmann H. J., “Lie brackets, real analyticity and geometric control”, Diff. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ. 1982, Birkhäuser, Boston e. a., 1983, 1–116 | MR