On~solvability of stationary transonic equations in the unbounded domain
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability of a boundary value problem in an infinite cylinder is proved for an equation modelling steady-state transonic flows of a chemical mixture: \begin{gather} u_xu_{xx}-\nabla_yu+\alpha u_x=0, \\ \frac{\partial u}{\partial N}\bigg|_{\partial\Omega\times R^1}=\varphi(x,y),\quad \lim_{|x|\to\infty}u_x=0,\quad \lim_{x\to\infty}|\nabla_yu|=0, \end{gather} Where $y\in\Omega\subset R^2$, $x\in R^1$, and $\alpha$ is a positive parameter. Conditions on $\varphi (x,y)$ are established under which there exists a classical solution of problem (1), (2) which is unique up to an additive constant.
@article{SM_1991_70_1_a2,
     author = {N. A. Lar'kin},
     title = {On~solvability of stationary transonic equations in the unbounded domain},
     journal = {Sbornik. Mathematics},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/}
}
TY  - JOUR
AU  - N. A. Lar'kin
TI  - On~solvability of stationary transonic equations in the unbounded domain
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 31
EP  - 45
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/
LA  - en
ID  - SM_1991_70_1_a2
ER  - 
%0 Journal Article
%A N. A. Lar'kin
%T On~solvability of stationary transonic equations in the unbounded domain
%J Sbornik. Mathematics
%D 1991
%P 31-45
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/
%G en
%F SM_1991_70_1_a2
N. A. Lar'kin. On~solvability of stationary transonic equations in the unbounded domain. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/