On~solvability of stationary transonic equations in the unbounded domain
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Solvability of a boundary value problem in an infinite cylinder is proved for an equation modelling steady-state transonic flows of a chemical mixture:
\begin{gather}
u_xu_{xx}-\nabla_yu+\alpha u_x=0,
\\
\frac{\partial u}{\partial N}\bigg|_{\partial\Omega\times R^1}=\varphi(x,y),\quad \lim_{|x|\to\infty}u_x=0,\quad \lim_{x\to\infty}|\nabla_yu|=0,
\end{gather}
Where $y\in\Omega\subset R^2$, $x\in R^1$, and $\alpha$ is a positive parameter. Conditions on $\varphi (x,y)$ are established under which there exists a classical solution of problem (1), (2) which is unique up to an additive constant.
			
            
            
            
          
        
      @article{SM_1991_70_1_a2,
     author = {N. A. Lar'kin},
     title = {On~solvability of stationary transonic equations in the unbounded domain},
     journal = {Sbornik. Mathematics},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/}
}
                      
                      
                    N. A. Lar'kin. On~solvability of stationary transonic equations in the unbounded domain. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/
