On solvability of stationary transonic equations in the unbounded domain
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solvability of a boundary value problem in an infinite cylinder is proved for an equation modelling steady-state transonic flows of a chemical mixture: \begin{gather} u_xu_{xx}-\nabla_yu+\alpha u_x=0, \\ \frac{\partial u}{\partial N}\bigg|_{\partial\Omega\times R^1}=\varphi(x,y),\quad \lim_{|x|\to\infty}u_x=0,\quad \lim_{x\to\infty}|\nabla_yu|=0, \end{gather} Where $y\in\Omega\subset R^2$, $x\in R^1$, and $\alpha$ is a positive parameter. Conditions on $\varphi (x,y)$ are established under which there exists a classical solution of problem (1), (2) which is unique up to an additive constant.
@article{SM_1991_70_1_a2,
     author = {N. A. Lar'kin},
     title = {On~solvability of stationary transonic equations in the unbounded domain},
     journal = {Sbornik. Mathematics},
     pages = {31--45},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/}
}
TY  - JOUR
AU  - N. A. Lar'kin
TI  - On solvability of stationary transonic equations in the unbounded domain
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 31
EP  - 45
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/
LA  - en
ID  - SM_1991_70_1_a2
ER  - 
%0 Journal Article
%A N. A. Lar'kin
%T On solvability of stationary transonic equations in the unbounded domain
%J Sbornik. Mathematics
%D 1991
%P 31-45
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/
%G en
%F SM_1991_70_1_a2
N. A. Lar'kin. On solvability of stationary transonic equations in the unbounded domain. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a2/

[1] Napolitano D., Ryzhov O. S., “Ob analogii mezhdu neravnovesnymi i vyazkimi inertnymi techeniyami pri okolozvukovykh skorostyakh”, ZhVM i MF, 11 (1971), 1229–1261 | MR | Zbl

[2] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[3] Babenko K. I., “O zadache Trikomi”, DAN SSSR, 291:1 (1986), 14–19 | MR

[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Mir, M., 1981 | MR

[5] Mikhailov V. P., “Ob obobschennoi zadache Trikomi”, DAN SSSR, 175:5 (1967), 1012–1014

[6] Fridrichs K. O., “Symmetric positive systems of differential Equations”, Comm. on Pure and Appl. Math., 11 (1958), 333–418 | DOI | MR

[7] Vragov V. N., “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v prostranstve”, Differents. uravneniya, 13 (1977), 1098–1105 | MR | Zbl

[8] Karatoprakliev G. D., “Ob odnom klasse uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Differents. uravneniya, 230 (1976), 769–772 | MR | Zbl

[9] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl

[10] Morawetz C. S., “On a weak solution for a Transonic Flow LProblem”, Comm. on Pure and Appl. Math., 38 (1985), 797–818 | DOI | MR

[11] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[12] Vishik M. I., “Reshenie sistemy kvazilineinykh uravnenii, imeyuschikh divergentnuyu formu, pri periodicheskikh granichnykh usloviyakh”, DAN SSSR, 137:3 (1961), 502–505 | MR | Zbl

[13] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi, Mir, M., 1971 | Zbl

[14] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR

[15] Diesperov V. N., Lomakin L. L., “Ob asimptoticheskikh svoistvakh resheniya odnoi kraevoi zadachi dlya vyazkogo transzvukovogo uravneniya”, ZhVM i MF, 16 (1976), 470–481 | MR | Zbl

[16] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl

[17] Hattori Harumi, “Breakdown of smooth solutions in dissipative nonlinear hyperbolic Equations”, Quart. Appl. Math., 40 (1982), 113–127 | MR | Zbl