Harmonic analysis in a~multiply-connected domain.~I
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 263-296

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is to construct harmonic analysis in a finitely-connected plane domain $\Omega_+$ bounded by $n$ piecewise analytic curves $\Gamma_1,\dots,\Gamma_n$, $\bigcup\limits_{k=1}^n\Gamma_k=\Gamma=\partial\Omega_+$.
@article{SM_1991_70_1_a15,
     author = {S. I. Fedorov},
     title = {Harmonic analysis in a~multiply-connected {domain.~I}},
     journal = {Sbornik. Mathematics},
     pages = {263--296},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a15/}
}
TY  - JOUR
AU  - S. I. Fedorov
TI  - Harmonic analysis in a~multiply-connected domain.~I
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 263
EP  - 296
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a15/
LA  - en
ID  - SM_1991_70_1_a15
ER  - 
%0 Journal Article
%A S. I. Fedorov
%T Harmonic analysis in a~multiply-connected domain.~I
%J Sbornik. Mathematics
%D 1991
%P 263-296
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a15/
%G en
%F SM_1991_70_1_a15
S. I. Fedorov. Harmonic analysis in a~multiply-connected domain.~I. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 263-296. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a15/