Averaging on a~background of vanishing viscosity
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Elliptic equations of the form
\begin{gather*}
\biggl(\mu a_{ij}\biggl (\frac x\varepsilon\biggr)\frac\partial{\partial x_i}
\frac\partial{\partial x_j}+\varepsilon^{-1}v_i\biggl (\frac x\varepsilon\biggr) \frac\partial{\partial x_i}\biggr)u^{\mu,\varepsilon}(x)=0,
\\
u^{\mu,\varepsilon}\big|_{\partial\Omega}=\varphi(x) 
\end{gather*}
with periodic coefficients are considered; $\mu$ and $\varepsilon$ are small parameters. For potential fields $v(y)$ and constants $a_{ij}=\delta_{ij}$, the asymptotic behavior as $\mu\to 0$ of the coefficients of the averaged operator (which is customarily also called the effective diffusion) is studied. It is shown that as $\mu\to 0$ the effective diffusion $\sigma(\mu)=\sigma_{ij}(\mu)$ decays exponentially, and the limit $\lim\limits_{\mu\to 0}\mu\ln\sigma(\mu)$ is found. 
Sufficient conditions are found for the existence of a limit operator as $\mu$ and $\varepsilon$ tend to 0 simultaneously. The structure of this operator depends on the symmetry reserve of the coefficients $a_{ij}(y)$ and $v_i(y)$; in particular, it may decompose into independent operators in subspaces of lower dimension.
			
            
            
            
          
        
      @article{SM_1991_70_1_a14,
     author = {S. M. Kozlov and A. L. Piatnitski},
     title = {Averaging on a~background of vanishing viscosity},
     journal = {Sbornik. Mathematics},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/}
}
                      
                      
                    S. M. Kozlov; A. L. Piatnitski. Averaging on a~background of vanishing viscosity. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/
