Averaging on a~background of vanishing viscosity
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Elliptic equations of the form \begin{gather*} \biggl(\mu a_{ij}\biggl (\frac x\varepsilon\biggr)\frac\partial{\partial x_i} \frac\partial{\partial x_j}+\varepsilon^{-1}v_i\biggl (\frac x\varepsilon\biggr) \frac\partial{\partial x_i}\biggr)u^{\mu,\varepsilon}(x)=0, \\ u^{\mu,\varepsilon}\big|_{\partial\Omega}=\varphi(x) \end{gather*} with periodic coefficients are considered; $\mu$ and $\varepsilon$ are small parameters. For potential fields $v(y)$ and constants $a_{ij}=\delta_{ij}$, the asymptotic behavior as $\mu\to 0$ of the coefficients of the averaged operator (which is customarily also called the effective diffusion) is studied. It is shown that as $\mu\to 0$ the effective diffusion $\sigma(\mu)=\sigma_{ij}(\mu)$ decays exponentially, and the limit $\lim\limits_{\mu\to 0}\mu\ln\sigma(\mu)$ is found. Sufficient conditions are found for the existence of a limit operator as $\mu$ and $\varepsilon$ tend to 0 simultaneously. The structure of this operator depends on the symmetry reserve of the coefficients $a_{ij}(y)$ and $v_i(y)$; in particular, it may decompose into independent operators in subspaces of lower dimension.
@article{SM_1991_70_1_a14,
     author = {S. M. Kozlov and A. L. Piatnitski},
     title = {Averaging on a~background of vanishing viscosity},
     journal = {Sbornik. Mathematics},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/}
}
TY  - JOUR
AU  - S. M. Kozlov
AU  - A. L. Piatnitski
TI  - Averaging on a~background of vanishing viscosity
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 241
EP  - 261
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/
LA  - en
ID  - SM_1991_70_1_a14
ER  - 
%0 Journal Article
%A S. M. Kozlov
%A A. L. Piatnitski
%T Averaging on a~background of vanishing viscosity
%J Sbornik. Mathematics
%D 1991
%P 241-261
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/
%G en
%F SM_1991_70_1_a14
S. M. Kozlov; A. L. Piatnitski. Averaging on a~background of vanishing viscosity. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/