Averaging on a background of vanishing viscosity
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elliptic equations of the form \begin{gather*} \biggl(\mu a_{ij}\biggl (\frac x\varepsilon\biggr)\frac\partial{\partial x_i} \frac\partial{\partial x_j}+\varepsilon^{-1}v_i\biggl (\frac x\varepsilon\biggr) \frac\partial{\partial x_i}\biggr)u^{\mu,\varepsilon}(x)=0, \\ u^{\mu,\varepsilon}\big|_{\partial\Omega}=\varphi(x) \end{gather*} with periodic coefficients are considered; $\mu$ and $\varepsilon$ are small parameters. For potential fields $v(y)$ and constants $a_{ij}=\delta_{ij}$, the asymptotic behavior as $\mu\to 0$ of the coefficients of the averaged operator (which is customarily also called the effective diffusion) is studied. It is shown that as $\mu\to 0$ the effective diffusion $\sigma(\mu)=\sigma_{ij}(\mu)$ decays exponentially, and the limit $\lim\limits_{\mu\to 0}\mu\ln\sigma(\mu)$ is found. Sufficient conditions are found for the existence of a limit operator as $\mu$ and $\varepsilon$ tend to 0 simultaneously. The structure of this operator depends on the symmetry reserve of the coefficients $a_{ij}(y)$ and $v_i(y)$; in particular, it may decompose into independent operators in subspaces of lower dimension.
@article{SM_1991_70_1_a14,
     author = {S. M. Kozlov and A. L. Piatnitski},
     title = {Averaging on a~background of vanishing viscosity},
     journal = {Sbornik. Mathematics},
     pages = {241--261},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/}
}
TY  - JOUR
AU  - S. M. Kozlov
AU  - A. L. Piatnitski
TI  - Averaging on a background of vanishing viscosity
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 241
EP  - 261
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/
LA  - en
ID  - SM_1991_70_1_a14
ER  - 
%0 Journal Article
%A S. M. Kozlov
%A A. L. Piatnitski
%T Averaging on a background of vanishing viscosity
%J Sbornik. Mathematics
%D 1991
%P 241-261
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/
%G en
%F SM_1991_70_1_a14
S. M. Kozlov; A. L. Piatnitski. Averaging on a background of vanishing viscosity. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 241-261. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a14/

[1] Kozlov S. M., “Osnovnye sostoyaniya kvaziperiodicheskikh operatorov”, DAN SSSR, 271:3 (1983), 532–536 | MR | Zbl

[2] Pyatnitskii A. L., “Usrednenie singulyarno vozmuschennogo uravneniya s bystroostsilliruyuschimi koeffitsientami v sloe”, Matem. sb., 121(163) (1983), 18–39 | MR

[3] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 63–133 | MR

[5] Kozlov S. M., “Metod usredneniya i bluzhdaniya v neodnorodnykh sredakh”, UMN, 40:2 (1985), 61–120 | MR

[6] Kozlov S. M., “Geometricheskie aspekty usredneniya”, UMN, 44:2 (1989), 79–121 | MR

[7] Panasenko G. P., “Asimptotika vysshikh poryadkov reshenii zadach o kontakte periodicheskikh struktur”, Matem. sb., 110(152) (1979), 505–538 | MR | Zbl

[8] Efros A. L., Fizika i geometriya besporyadka, Nauka, M., 1982 | MR

[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[10] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[12] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1975 | MR

[13] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, t. 1, Nauka, M., 1968 | Zbl

[14] Kozlov S. M., “Usrednenie raznostnykh skhem”, Matem. sb., 129(171) (1986), 338–357

[15] Aronson D. G., “Bounds for the foundamental solution of a parabolic equations”, Bull. Amer. Math. Soc., 73:4 (1967), 890–896 | DOI | MR | Zbl

[16] Kifer Yu. I., “Ob asimptotike perekhodnykh plotnostei protsessov s maloi diffuziei”, Teoriya veroyatnostei i ee primeneniya, 21:3 (1976), 527–536 | MR | Zbl

[17] Friedman A., “Small random perturbations of dynamical systems and applications to parabolic equations”, Indiana Univ. Math. J., 24:6 (1974), 533–553 | DOI | MR | Zbl