The Wiener–Hopf equation and Blaschke products
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 205-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Wiener–Hopf operator $A$ is studied in the space of functions locally square-integrable on $\mathbf R$ and slowly increasing to $\infty$. The symbol of the operator is an infinitely differentiable function on $\mathbf R$ and has at $\infty$ a discontinuity of “vorticity point” type described either by a Blaschke function with all its zeros concentrated in a strip and bounded away from $\mathbf R$, or by an outer function meromorphic in the complex plane with separated set of real zeros of bounded multiplicity. The operator $A$ is one-sidedly invertible, and $\operatorname{ind}A=\pm\infty$. Procedures are worked out for inverting it. The subspace $\operatorname{ker}A$ is described in terms of generalized Dirichlet series.
@article{SM_1991_70_1_a12,
     author = {V. B. Dybin},
     title = {The {Wiener{\textendash}Hopf} equation and {Blaschke} products},
     journal = {Sbornik. Mathematics},
     pages = {205--230},
     year = {1991},
     volume = {70},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a12/}
}
TY  - JOUR
AU  - V. B. Dybin
TI  - The Wiener–Hopf equation and Blaschke products
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 205
EP  - 230
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a12/
LA  - en
ID  - SM_1991_70_1_a12
ER  - 
%0 Journal Article
%A V. B. Dybin
%T The Wiener–Hopf equation and Blaschke products
%J Sbornik. Mathematics
%D 1991
%P 205-230
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a12/
%G en
%F SM_1991_70_1_a12
V. B. Dybin. The Wiener–Hopf equation and Blaschke products. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 205-230. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a12/

[1] Douglas R. G., “Toeplitz and Wiener-Hopf operators in $H^\infty+C$”, Bull. Amer. Math. S., 74 (1968), 895–899 | DOI | MR | Zbl

[2] Duduchava R. V., “Integralnye uravneniya svertki s razryvnymi predsimvolami, singulyarnye integralnye uravneniya s nepodvizhnymi osobennostyami i ikh prilozheniya k zadacham mekhaniki”, Tr. Tbilisskogo matem. in-ta, LX (1979), 2–136

[3] Duduchava R. V., Saginashvili A. I., “Integralnye uravneniya svertki na poluosi s polu-pochti-periodicheskimi predsimvolami”, Differents. uravneniya, 17:2 (1981), 301–312 | MR | Zbl

[4] Bart H., Gohberg I., Kaashoek M. A., “Fredgolm theory of Wiener - Hopf equations in terms of realization of their symbols”, Integral Equations and Operator Theory, 8:5 (1985), 590–613 | DOI | MR | Zbl

[5] Coburn L. A., Douglas R. G., “Translation operators on the half-line”, Proc. Nat. Acad. Sci. Math., 62 (1969), 1010–1013 | DOI | MR | Zbl

[6] Nikolskii N. K., Operatory Gankelya i Teplitsa, I–III, Preprinty LOMI. R-1-82, R-2-82, R-5-82, LOMI, Leningrad, 1982 | MR

[7] Gokhberg I. Ts., Feldman I. A., “Integralno-raznostnye uravneniya Vinera - Khopfa”, Acta Sci. Math., 30:3–4 (1969), 199–224 | MR | Zbl

[8] Dybin V. B., “Integralnyi operator Vinera - Khopfa v klassakh funktsii so stepennym kharakterom povedeniya na beskonechnosti”, Izv. AN ArmSSR. Ser. matem., 2:4 (1967), 250–270 | MR | Zbl

[9] Dybin V. B., “Normalizatsiya operatora Vinera - Khopfa”, DAN SSSR, 191:4 (1970), 759–762 | MR | Zbl

[10] Khaikin M. I., “Ob integralnom uravnenii tipa svertki pervogo roda”, Izv. VUZov. Matematika, 1967, no. 3 (58), 105–116

[11] Chebotarev G. N., “Ob odnom osobom sluchae uravneniya Vinera-Khopfa v prostranstve ogranichennykh funktsii”, Izv. VUZov. Matematika, 1967, no. 10, 92–101 | Zbl

[12] Tovmasyan N. E., “Osobyi sluchai integralnogo uravneniya Vinera - Khopfa”, Sib. matem. zhurn., 19:4 (1978), 902–921 | MR | Zbl

[13] Babayan A. O., “Osobyi sluchai uravneniya Vinera - Khopfa”, Izv. AN Arm. SSR. Ser. matem., 17:5 (1982), 387–404 | MR | Zbl

[14] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[15] Gaponenko V. N., Dybin V. B., “Integralno-raznostnoe uravnenie Vinera - Khopfa v isklyuchitelnom sluchae”, Matem. issledov., 7:4(26) (1972), 64–67 | MR

[16] Dybin V. B., Dzhirgalova S. B., “Ob integralno-raznostnom uravnenii Vinera-Khopfa v isklyuchitelnom sluchae”, Izv. VUZov. Matematika, 1985, no. 5, 64–67 | MR | Zbl

[17] Dybin V. B., “Singulyarnye integralnye uravneniya s koeffitsientami, annuliruyuschimisya na schetnykh mnozhestvakh”, Math. Nachr., 124 (1985), 65–84 | DOI | MR | Zbl

[18] Dybin V. B., “Singulyarnye integralnye uravneniya so schetnym mnozhestvom pochti-periodicheskikh razryvov u ikh koeffitsientov”, Tr. Tbilisskogo matem. in-ta, 82 (1986), 90–105 | MR | Zbl

[19] Grudskii S. M., “Singulyarnye integralnye uravneniya i kraevaya zadacha Rimana s beskonechnym indeksom v prostranstve $L_p(\Gamma,\omega)$”, Izv. AN SSSR. Ser. matem., 49:1 (1985), 55–88 | MR

[20] Dzhrbashyan M. M., “Bazisnost nekotorykh biortogonalnykh sistem i reshenie kratnoi interpolyatsionnoi zadachi v klassakh $H^p$ v poluploskosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1322–1384 | MR | Zbl

[21] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[22] Hrusčev S. V., Nikol'skii N. K., Pavlov B. S., “Unconditional bases of exponentials and reproducing kernels”, Lect. Notes Math., 864 (1981), 214–335 | DOI | MR

[23] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[24] Grudskii S. M., “Singulyarnye integralnye operatory s beskonechnym indeksom i proizvedeniya Blyashke”, Math. Nacht., 129 (1986), 313–331 | DOI | MR | Zbl

[25] Cherskii Yu. I., “K resheniyu kraevoi zadachi Rimana v klasse obobschennykh funktsii”, DAN SSSR, 125:3 (1959), 500–503

[26] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[27] Dybin V. B., Karapetyants N. K., “Ob integralnykh uravneniyakh tipa svertki v klasse obobschennykh funktsii”, Sib. matem. zhurn., 7:3 (1966), 531–545 | MR | Zbl

[28] Dybin V. B., “Isklyuchitelnyi sluchai integralnykh uravnenii tipa svertki v klasse obobschennykh funktsii”, DAN SSSR, 161:4 (1965), 753–756 | MR | Zbl

[29] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[30] Dybin V. B., Kratnaya interpolyatsiya v vesovykh klassakh Khardi i regulyarizatsiya raskhodyaschikhsya integralov, Dep. VINITI. No2990-V87, 31 pp. | Zbl

[31] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[32] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[33] Dybin V. B., “Ob uravnenii Vinera - Khopfa s simvolom, annuliruyuschimsya na schetnom mnozhestve”, Differ., integr. ur-iya i kompleksn. analiz, KGU, Elista, 1986, 59–81 | MR

[34] Dybin V. B., “Odnomernye singulyarnye integralnye uravneniya s annuliruyuschimisya koeffitsientami”, Dokl. rasshiren. zased. seminara IPM im. I. N. Vekua, 1, no. 1, TGU, Tbilisi, 1985, 76–78

[35] Vladimirov V. S., “Uravnenie Vinera - Khopfa v algebrakh Nevanlinny i Smirnova”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 767–784

[36] Vladimirov V. S., Volovich I. V., “Ob odnoi modeli statisticheskoi fiziki”, TMF, 54:1 (1983), 8–22 | MR

[37] Parasyuk O. S., “O «parnykh» integralnykh uravneniyakh v klasse obobschennykh funktsii”, DAN SSSR, 110:6 (1956), 957–959 | MR

[38] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR