@article{SM_1991_70_1_a10,
author = {I. Gy\"ongy},
title = {On approximation of {It\^o} stochastic equations},
journal = {Sbornik. Mathematics},
pages = {165--173},
year = {1991},
volume = {70},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a10/}
}
I. Gyöngy. On approximation of Itô stochastic equations. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 165-173. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a10/
[1] Ikeda N., Nakao S., Yamato Y., “A class of approximations for Brownian motion”, Publ. RIMS. Kyoto Univ., 13 (1977), 285–300 | DOI | MR | Zbl
[2] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, Amsterdam–Tokyo, North-Holland-Kodanska, 1981 | MR | Zbl
[3] Matskyavichyus V. K., “$S^p$-ustoichivost reshenii simmetricheskikh stokhasticheskikh uravnenii”, Litov. matem. sb., 25:4 (1985), 72–84 | MR
[4] Gyöngy I., “On the approximation of stochastic differential equations”, Stochastics, 23 (1988), 331–352 | MR | Zbl
[5] Gyöngy I., “On the approximation of stochastic partial differential equations, I”, Stochastics, 25 (1988), 59–85 | MR | Zbl
[6] Picard J., 6. Methods de perturbation pour les equations differentielles stochastiques et le filtrage non lineaire, L'Universite de Provence Centre Saint-Charles, These, 1987
[7] Mackevicius V., “$S^p$ stability of solutions of symmetric stochastic differential equations with discontinuous driwing semimartingales”, Ann. Inst. Henri Poincare, 23:4 (1987), 575–592 | MR | Zbl