The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

It is assumed that the equilibrium state of the relaxation system $$ \varepsilon\dot x=f(x,y), \qquad \dot y=g(x,y,\mu), $$ where $x\in R^n$ and $y\in R$, passes generically through a point of discontinuity as $\mu$ varies. Under this condition stable duck cycles and cycles arising in a neighborhood of the equilibrium state are constructed.
@article{SM_1991_70_1_a0,
     author = {A. Yu. Kolesov and E. F. Mishchenko},
     title = {The {Pontryagin} delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
TI  - The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 1
EP  - 10
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/
LA  - en
ID  - SM_1991_70_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%T The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable
%J Sbornik. Mathematics
%D 1991
%P 1-10
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/
%G en
%F SM_1991_70_1_a0
A. Yu. Kolesov; E. F. Mishchenko. The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/