The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 1-10
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is assumed that the equilibrium state of the relaxation system
$$
\varepsilon\dot x=f(x,y), \qquad \dot y=g(x,y,\mu),
$$
where $x\in R^n$ and $y\in R$, passes generically through a point of discontinuity as $\mu$ varies. Under this condition stable duck cycles and cycles arising in a neighborhood of the equilibrium state are constructed.
			
            
            
            
          
        
      @article{SM_1991_70_1_a0,
     author = {A. Yu. Kolesov and E. F. Mishchenko},
     title = {The {Pontryagin} delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko TI - The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable JO - Sbornik. Mathematics PY - 1991 SP - 1 EP - 10 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/ LA - en ID - SM_1991_70_1_a0 ER -
%0 Journal Article %A A. Yu. Kolesov %A E. F. Mishchenko %T The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable %J Sbornik. Mathematics %D 1991 %P 1-10 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/ %G en %F SM_1991_70_1_a0
A. Yu. Kolesov; E. F. Mishchenko. The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable. Sbornik. Mathematics, Tome 70 (1991) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1991_70_1_a0/
