The Fubini's theorem for vector-valued measures
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463
Voir la notice de l'article provenant de la source Math-Net.Ru
The situation is considered when either the transitional or initial measure is vector-valued (the other is, respectively, scalar-valued; thus the product measure is also vector-valued). The integrable function is vector-valued. In this situation two theorems of Fubini type are proved.
@article{SM_1991_69_2_a8,
author = {A. V. Uglanov},
title = {The {Fubini's} theorem for vector-valued measures},
journal = {Sbornik. Mathematics},
pages = {453--463},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/}
}
A. V. Uglanov. The Fubini's theorem for vector-valued measures. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/