The Fubini's theorem for vector-valued measures
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The situation is considered when either the transitional or initial measure is vector-valued (the other is, respectively, scalar-valued; thus the product measure is also vector-valued). The integrable function is vector-valued. In this situation two theorems of Fubini type are proved.
@article{SM_1991_69_2_a8,
     author = {A. V. Uglanov},
     title = {The {Fubini's} theorem for vector-valued measures},
     journal = {Sbornik. Mathematics},
     pages = {453--463},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - The Fubini's theorem for vector-valued measures
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 453
EP  - 463
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/
LA  - en
ID  - SM_1991_69_2_a8
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T The Fubini's theorem for vector-valued measures
%J Sbornik. Mathematics
%D 1991
%P 453-463
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/
%G en
%F SM_1991_69_2_a8
A. V. Uglanov. The Fubini's theorem for vector-valued measures. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/

[1] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[2] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[3] Edvards R. E., Funktsionalnyi analiz, Mir, M., 1969

[4] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, t. 1, Nauka, M., 1971 | MR

[5] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1975 | MR

[6] Uglanov A. V., “Poverkhnostnye integraly v banakhovom prostranstve”, Matem. sb., 110 (152) (1979), 189–217 | MR | Zbl

[7] Uglanov A. V., “Formula Nyutona-Leibnitsa na banakhovykh prostranstvakh i priblizhenie funktsii beskonechnomernogo argumenta”, Izv. AN SSSR. Ser. matem., 51 (1987), 152–170 | MR | Zbl

[8] Watanabe H., “Path integral for some systems of partial differential equations”, Proc. Japan Academy. Ser. A, 60:3 (1984), 86–89 | DOI | MR | Zbl