The Fubini's theorem for vector-valued measures
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463

Voir la notice de l'article provenant de la source Math-Net.Ru

The situation is considered when either the transitional or initial measure is vector-valued (the other is, respectively, scalar-valued; thus the product measure is also vector-valued). The integrable function is vector-valued. In this situation two theorems of Fubini type are proved.
@article{SM_1991_69_2_a8,
     author = {A. V. Uglanov},
     title = {The {Fubini's} theorem for vector-valued measures},
     journal = {Sbornik. Mathematics},
     pages = {453--463},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - The Fubini's theorem for vector-valued measures
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 453
EP  - 463
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/
LA  - en
ID  - SM_1991_69_2_a8
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T The Fubini's theorem for vector-valued measures
%J Sbornik. Mathematics
%D 1991
%P 453-463
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/
%G en
%F SM_1991_69_2_a8
A. V. Uglanov. The Fubini's theorem for vector-valued measures. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 453-463. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a8/