Riesz transforms and partial derivatives
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 445-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New estimates are given in the two-dimensional case for special operators that are linear combinations of Riesz transforms. They are used to investigate the distances between partial derivatives $\dfrac{\partial^nf}{\partial x_1^k\partial z_2^l}$, $k+l=n$, on the class $$ K_n=\biggl\{f\colon\biggl\|\frac{\partial^nf}{\partial{x_1^n}}\biggr\|_p\leqslant 1,\ \biggl\|\frac{\partial^nf}{\partial{x_1^n}}\biggr\|_p\leqslant 1\biggr\}, \qquad 1<p<\infty. $$
@article{SM_1991_69_2_a7,
     author = {V. A. Yudin},
     title = {Riesz transforms and partial derivatives},
     journal = {Sbornik. Mathematics},
     pages = {445--451},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Riesz transforms and partial derivatives
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 445
EP  - 451
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/
LA  - en
ID  - SM_1991_69_2_a7
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Riesz transforms and partial derivatives
%J Sbornik. Mathematics
%D 1991
%P 445-451
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/
%G en
%F SM_1991_69_2_a7
V. A. Yudin. Riesz transforms and partial derivatives. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 445-451. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/

[1] Stein M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[2] Bernshtein S. N., Sobranie sochinenii, t. 1, Izd-vo AN SSSR, M., 1952

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye preobrazovaniya i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[4] Solntsev Yu. K., “Ob otsenke smeshannoi proizvodnoi v $L_p(G)$”, Tr. MIAN, 64 (1961), 147–164

[5] Lizorkin P. I., “Neizotropnye besselevy potentsialy. Teoremy vlozheniya dlya prostranstv Soboleva $L_p(r^1,\dots,r^n)$ s drobnymi proizvodnymi”, DAN SSSR, 170:3 (1966), 508–511 | MR | Zbl

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR