Riesz transforms and partial derivatives
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 445-451
Cet article a éte moissonné depuis la source Math-Net.Ru
New estimates are given in the two-dimensional case for special operators that are linear combinations of Riesz transforms. They are used to investigate the distances between partial derivatives $\dfrac{\partial^nf}{\partial x_1^k\partial z_2^l}$, $k+l=n$, on the class $$ K_n=\biggl\{f\colon\biggl\|\frac{\partial^nf}{\partial{x_1^n}}\biggr\|_p\leqslant 1,\ \biggl\|\frac{\partial^nf}{\partial{x_1^n}}\biggr\|_p\leqslant 1\biggr\}, \qquad 1<p<\infty. $$
@article{SM_1991_69_2_a7,
author = {V. A. Yudin},
title = {Riesz transforms and partial derivatives},
journal = {Sbornik. Mathematics},
pages = {445--451},
year = {1991},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/}
}
V. A. Yudin. Riesz transforms and partial derivatives. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 445-451. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a7/
[1] Stein M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[2] Bernshtein S. N., Sobranie sochinenii, t. 1, Izd-vo AN SSSR, M., 1952
[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye preobrazovaniya i teoremy vlozheniya, Nauka, M., 1975 | Zbl
[4] Solntsev Yu. K., “Ob otsenke smeshannoi proizvodnoi v $L_p(G)$”, Tr. MIAN, 64 (1961), 147–164
[5] Lizorkin P. I., “Neizotropnye besselevy potentsialy. Teoremy vlozheniya dlya prostranstv Soboleva $L_p(r^1,\dots,r^n)$ s drobnymi proizvodnymi”, DAN SSSR, 170:3 (1966), 508–511 | MR | Zbl
[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR