Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 431-444

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $(T,\Omega,\mu)$ is a nonatomic measure space and $\varphi$ an even function nondecreasing on $[0,\infty)$ and such that $\varphi(0)=0$, $\varphi(u)>0$ for $u>0$, and $\varphi(u_1+u_2)\varphi(u_1)+\varphi(u_2)$ for all $u_1,u_2>0$, then the space $L_\varphi(T,\Omega,\mu)$ does not contain boundedly compact Tchebycheff sets with more than one point.
@article{SM_1991_69_2_a6,
     author = {D. G. Kamuntavichius},
     title = {Existence of untrivial compact {Tchebycheff} sets in the spaces~$L_\varphi$},
     journal = {Sbornik. Mathematics},
     pages = {431--444},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/}
}
TY  - JOUR
AU  - D. G. Kamuntavichius
TI  - Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 431
EP  - 444
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/
LA  - en
ID  - SM_1991_69_2_a6
ER  - 
%0 Journal Article
%A D. G. Kamuntavichius
%T Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$
%J Sbornik. Mathematics
%D 1991
%P 431-444
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/
%G en
%F SM_1991_69_2_a6
D. G. Kamuntavichius. Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 431-444. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/