Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 431-444
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that if $(T,\Omega,\mu)$ is a nonatomic measure space and $\varphi$ an even function nondecreasing on $[0,\infty)$ and such that $\varphi(0)=0$, $\varphi(u)>0$ for $u>0$, and $\varphi(u_1+u_2)\varphi(u_1)+\varphi(u_2)$ for all $u_1,u_2>0$, then the space $L_\varphi(T,\Omega,\mu)$ does not contain boundedly compact Tchebycheff sets with more than one point.
			
            
            
            
          
        
      @article{SM_1991_69_2_a6,
     author = {D. G. Kamuntavichius},
     title = {Existence of untrivial compact {Tchebycheff} sets in the spaces~$L_\varphi$},
     journal = {Sbornik. Mathematics},
     pages = {431--444},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/}
}
                      
                      
                    D. G. Kamuntavichius. Existence of untrivial compact Tchebycheff sets in the spaces~$L_\varphi$. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 431-444. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a6/
