The dependence of the boundary value problem solution from a perturbation of a domain along vector fields
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 393-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Regular dependence theorems are presented and growth estimates in Hölder norms are established for the solutions of boundary value problems, under perturbation of the domain by vector fields. The question of parametrization of domains is considered. The results obtained are applied to the analysis of operator functions which arise in the study of a free boundary problem.
@article{SM_1991_69_2_a4,
     author = {A. K. Kerimov},
     title = {The dependence of the boundary value problem solution from a~perturbation of a~domain along vector fields},
     journal = {Sbornik. Mathematics},
     pages = {393--415},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a4/}
}
TY  - JOUR
AU  - A. K. Kerimov
TI  - The dependence of the boundary value problem solution from a perturbation of a domain along vector fields
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 393
EP  - 415
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a4/
LA  - en
ID  - SM_1991_69_2_a4
ER  - 
%0 Journal Article
%A A. K. Kerimov
%T The dependence of the boundary value problem solution from a perturbation of a domain along vector fields
%J Sbornik. Mathematics
%D 1991
%P 393-415
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a4/
%G en
%F SM_1991_69_2_a4
A. K. Kerimov. The dependence of the boundary value problem solution from a perturbation of a domain along vector fields. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 393-415. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a4/

[1] Sea Zh., “Chislennyi metod poiska optimalnoi oblasti”, Vychisl. metody v matem. fizike, geofizike i optimalnom upravlenii, Nauka (Sib. otd.), Novosibirsk, 1978, 64–74 | MR

[2] Cea J., “Problems of shape optical design”, Optimization of distributed parameter structures, 2, Alphen aan den Rijn, Sijthoff and Noordhoff. Holland, 1988, 1040–1089

[3] Zolesio J. P., “The material derivative (or speed) method for shape optimization”, Optimization of distributed parameter structures, 2, Alphen aan den Rijn, Sijthoff and Noordhoff. Holland, 1981, 1089–1151 | MR

[4] Kerimov A. K., “Dostatochnye usloviya optimalnosti v odnoi ekstremalnoi zadache so svobodnoi granitsei”, Tr. MIAN, 185 (1988), 87–105 | MR

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[6] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[7] Torp Dzh., Nachalnye glavy differentsialnoi geometrii, Mir, M., 1982 | MR

[8] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957

[9] Zehnder E., “Generalized implicit function theorems with some application to some small divisor problems, 1”, Comm. Pure Appl. Math., 28:1 (1975), 91–140 | MR | Zbl

[10] Dervieux A., “A perturbation study of jet-like annular free boundary problem and an application to an optimal control problem”, Comm. in Partial Differential Equations, 6(2) (1981), 197–247 | DOI | MR | Zbl

[11] Dervieux A., “A perturbation study of the obstacle problem by means of a generalised implicit function theorem”, Ann. Mat. pura ed appl. (IV), 128 (1981), 321–364 | DOI | MR