The poles of Tchebycheff rational approximations and meromorphic extension of~functions
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 379-391

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization is given for an $m$-meromorphic continuation of a continuous function $f$ on the segment $[-1,1]$, in terms of the asymptotic behavior of the finite poles of the $m$th row of the table of Tchebycheff rational approximants to $f$.
@article{SM_1991_69_2_a3,
     author = {V. A. Prokhorov},
     title = {The poles of {Tchebycheff} rational approximations and meromorphic extension of~functions},
     journal = {Sbornik. Mathematics},
     pages = {379--391},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/}
}
TY  - JOUR
AU  - V. A. Prokhorov
TI  - The poles of Tchebycheff rational approximations and meromorphic extension of~functions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 379
EP  - 391
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/
LA  - en
ID  - SM_1991_69_2_a3
ER  - 
%0 Journal Article
%A V. A. Prokhorov
%T The poles of Tchebycheff rational approximations and meromorphic extension of~functions
%J Sbornik. Mathematics
%D 1991
%P 379-391
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/
%G en
%F SM_1991_69_2_a3
V. A. Prokhorov. The poles of Tchebycheff rational approximations and meromorphic extension of~functions. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 379-391. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/