The poles of Tchebycheff rational approximations and meromorphic extension of~functions
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 379-391
Voir la notice de l'article provenant de la source Math-Net.Ru
A characterization is given for an $m$-meromorphic continuation of a continuous function $f$ on the segment $[-1,1]$, in terms of the asymptotic behavior of the finite poles of the $m$th row of the table of Tchebycheff rational approximants to $f$.
@article{SM_1991_69_2_a3,
author = {V. A. Prokhorov},
title = {The poles of {Tchebycheff} rational approximations and meromorphic extension of~functions},
journal = {Sbornik. Mathematics},
pages = {379--391},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/}
}
V. A. Prokhorov. The poles of Tchebycheff rational approximations and meromorphic extension of~functions. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 379-391. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a3/