@article{SM_1991_69_2_a2,
author = {B. D. Boyanov},
title = {The optimal recovery of smooth functions},
journal = {Sbornik. Mathematics},
pages = {357--377},
year = {1991},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a2/}
}
B. D. Boyanov. The optimal recovery of smooth functions. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 357-377. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a2/
[1] Golomb M., Weinberg H., “Optimal approximation and error bounds”, On Numerical Approximation, ed. R. E. Langer, Univ. Wisconsin Press, 1959, 117–190 | MR
[2] Sard A., Linear Approximation, 9, AMS Surveys, Providence. Ehode Island, 1963 | MR | Zbl
[3] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ... kand. fiz.-matem. nauk, Izd-vo MGU, M., 1965
[4] Bakhvalov N. S., “Ob optimalnosti lineinykh metodov priblizheniya operatorov na vypuklykh klassakh funktsii”, ZhVM i MF, 11 (1971), 1014–1018 | Zbl
[5] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl
[6] Boyanov B. D., “Nailuchshie metody interpolirovaniya dlya nekotorykh klassov differentsiruemykh funktsii”, Matem. zametki, 17:4 (1975), 511–524 | MR | Zbl
[7] Micchelli C. A., Rivlin T. J., Winograd S., “The optimal recovery of smooth functions”, Numer. Math., 26 (1976), 191–200 | DOI | MR | Zbl
[8] Gaffney, Powell M. J. D., Optimal interpolation, Preprint C. S. 16. Computer Science and System Division A. E. R. E., Oxfordshire, Harwell, 1975 | MR
[9] Bojanov B. D., “A note on the optimal approximation of smooth periodic functions”, C. R. Acad. Bulg. Sci., 30:6 (1977), 809–812 | MR | Zbl
[10] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1, 1]$”, Matem. sb., 80(122) (1969), 290–304 | Zbl
[11] Velikin L. V., “Optimalnaya interpolyatsiya periodicheskikh differentsiruemykh funktsii s ogranichennoi starshei proizvodnoi”, Matem. zametki, 22:5 (1977), 663–670 | MR | Zbl
[12] Ligun A. A., “Optimal methods for the approximate calculations of functions on classes $W^rL_\infty$”, Analysis Math., 5:4 (1979), 269–286 | DOI | MR | Zbl
[13] Korneichuk N. P., “Poperechniki v $L_p$ klassov nepreryvnykh i differentsiruemykh funktsii i optimalnoe vosstanovlenie funktsii i ikh proizvodnykh”, DAN SSSR, 244:6 (1979), 1317–1321 | MR
[14] Subbotin Yu. N., “Ekstremalnye zadachi teorii priblizheniya funktsii pri nepolnoi informatsii”, Tr. MIAN SSSR, 145 (1980), 152–168 | MR | Zbl
[15] Vasilenko A. V., Optimalnyi metod vosstanovleniya funktsii s ogranichennoi variatsiei starshei proizvodnoi, Preprint VINITI. 5571-81, Zaporozhskii industr. in-t, 1981
[16] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdika, 5 (1979), 83–96 | MR | Zbl
[17] Micchelli C. A., Rivlin T. J., Optimal estimation in approximation theory, Proc. Intern. Symp. Freudenstadt, 1976, Plenum, N. Y., 1977 | MR | Zbl
[18] Karlin S., “Interpolation properties of generalized perfect splines and the solution of certain extremal problems, 1”, Trans. Amer. Math. Soc., 206 (1975), 25–66 | DOI | MR | Zbl
[19] de Boor C., “A remark concerning perfect splines”, Bull. Amer. Math. Soc., 8:4 (1975), 224–227
[20] Poia G., Segë G., Zadachi i teoremy iz analiza, ch. 1, Fizmatgiz, M., 1959
[21] Karlin S., Stadden V., Chebishevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR
[22] Atkinson K., Sharma A., “A partial characterization of poised Hermite-Birkhoff interpolation problems”, SIAM J. Numer. Anal., 6 (1969), 230–235 | DOI | MR | Zbl
[23] Schumaker Larry., Spline Functions: Basic Theory, John Wiley and Sons, N. Y., 1981 | MR | Zbl
[24] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19 (1940), 281–306 | MR | Zbl
[25] Spener E. Kh., Algebraicheskaya topologiya, Mir, M., 1971 | MR
[26] Schwartz J. T., Nonlinear functional analysis, Gordon and Breach, N. Y., 1969 | MR | Zbl
[27] Bojanov B. D., “Perfect splines of least uniform deviation”, Analysis Math., 6 (1980), 185–197 | DOI | MR