The Navier–Stokes and Euler equations on two-dimensional closed manifolds
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Navier–Stokes equations $$ \partial_tu+\nabla_uu+\nu\Lambda u=-\nabla p+f, \qquad \operatorname{div}u=0 $$ are considered on a two-dimensional closed manifold $M$ imbedded in $R^3$. Theorems on existence and uniqueness of generalized solutions of steady-state and time-dependent problems are proved. Unique solvability of the Euler equations $(\nu=0)$ is proved by passing to the limit as $\nu\to+0$. The existence of a maximal attractor for the Navier–Stokes system on $M$ is proved, and for the case where the manifold $M$ is the sphere $S^2$ an estimate for the Hausdorff dimension of the attractor is obtained: $$ \dim\mathscr A_{S^2}\leqslant c(\nu^{-8/3}\|f\|^{4/3}+\nu^{-2}\|f\|). $$
@article{SM_1991_69_2_a14,
     author = {A. A. Ilyin},
     title = {The {Navier{\textendash}Stokes} and {Euler} equations on two-dimensional closed manifolds},
     journal = {Sbornik. Mathematics},
     pages = {559--579},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - The Navier–Stokes and Euler equations on two-dimensional closed manifolds
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 559
EP  - 579
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/
LA  - en
ID  - SM_1991_69_2_a14
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T The Navier–Stokes and Euler equations on two-dimensional closed manifolds
%J Sbornik. Mathematics
%D 1991
%P 559-579
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/
%G en
%F SM_1991_69_2_a14
A. A. Ilyin. The Navier–Stokes and Euler equations on two-dimensional closed manifolds. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[3] Temam R., Uravneniya Nave - Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[4] Babin A. V., Vishik M. I., “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, UMN, 38:4 (1983), 133–187 | MR | Zbl

[5] Vishik M. I., Komech A. M., “Statisticheskie resheniya sistemy Nave - Stoksa i sistemy Eilera”, Uspekhi mekhaniki, 5:1/2 (1982), 65–120 | MR

[6] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave - Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[7] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[8] Dubrovin V. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[9] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67 (109) (1965), 609–642 | MR | Zbl

[10] Ilin A. A., Filatov A. N., “Ob odnoznachnoi razreshimosti uravnenii Nave - Stoksa na dvumernoi sfere”, DAN SSSR, 301:1 (1988), 18–22

[11] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR | Zbl

[12] Yudovich V. I., “Nestatsionarnye techeniya idealnykh neszhimaemykh zhidkostei”, Zhurn. vychisl. matematiki i matem. fiziki, 3:6 (1963), 1032–1066 | Zbl

[13] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo RGU, Rostov-na-Donu, 1984 | Zbl

[14] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[15] Ebin D., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. of Math., 92:1 (1970), 103–163 ; Matematika. Periodicheskii sbornik perevodov inostrannykh statei, 17:5–6 (1973) | DOI | MR | Zbl

[16] Foias C., Saut J. C., “Asymptotic behavior, as $t\to\infty$ of solutions of Navier-Stokes equations and nonlinear spectral manifolds”, Indiana Univ. Math. J., 33:3 (1984), 459–477 | DOI | MR | Zbl

[17] Ghidaglia J.-M., “On the fractal dimension for viscous in compressible fluid flows”, SIAM J. Math. Anal., 17:5 (1986), 1139–1157 | DOI | MR | Zbl

[18] Foias C., Temam R., “Some analytic and geometric properties of the solutions of the evolution Navier -Stokes equations”, J. Math. Pures. Appl., 58:3 (1979), 339–368 | MR | Zbl

[19] Temam R., Navier-Stokes equations and nonlinear functional analysis, Soc. for Industrial and Applied Math., Philadelphia, 1983 | MR