The Navier--Stokes and Euler equations on two-dimensional closed manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Navier–Stokes equations
$$
\partial_tu+\nabla_uu+\nu\Lambda u=-\nabla p+f, \qquad \operatorname{div}u=0
$$
are considered on a two-dimensional closed manifold $M$ imbedded in $R^3$. Theorems on existence and uniqueness of generalized solutions of steady-state and time-dependent problems are proved. Unique solvability of the Euler equations $(\nu=0)$ is proved by passing to the limit as $\nu\to+0$. The existence of a maximal attractor for the Navier–Stokes system on $M$ is proved, and for the case where the manifold $M$ is the sphere $S^2$ an estimate for the Hausdorff dimension of the attractor is obtained:
$$
\dim\mathscr A_{S^2}\leqslant c(\nu^{-8/3}\|f\|^{4/3}+\nu^{-2}\|f\|).
$$
            
            
            
          
        
      @article{SM_1991_69_2_a14,
     author = {A. A. Ilyin},
     title = {The {Navier--Stokes} and {Euler} equations on two-dimensional closed manifolds},
     journal = {Sbornik. Mathematics},
     pages = {559--579},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/}
}
                      
                      
                    A. A. Ilyin. The Navier--Stokes and Euler equations on two-dimensional closed manifolds. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/
