The Navier--Stokes and Euler equations on two-dimensional closed manifolds
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579

Voir la notice de l'article provenant de la source Math-Net.Ru

The Navier–Stokes equations $$ \partial_tu+\nabla_uu+\nu\Lambda u=-\nabla p+f, \qquad \operatorname{div}u=0 $$ are considered on a two-dimensional closed manifold $M$ imbedded in $R^3$. Theorems on existence and uniqueness of generalized solutions of steady-state and time-dependent problems are proved. Unique solvability of the Euler equations $(\nu=0)$ is proved by passing to the limit as $\nu\to+0$. The existence of a maximal attractor for the Navier–Stokes system on $M$ is proved, and for the case where the manifold $M$ is the sphere $S^2$ an estimate for the Hausdorff dimension of the attractor is obtained: $$ \dim\mathscr A_{S^2}\leqslant c(\nu^{-8/3}\|f\|^{4/3}+\nu^{-2}\|f\|). $$
@article{SM_1991_69_2_a14,
     author = {A. A. Ilyin},
     title = {The {Navier--Stokes} and {Euler} equations on two-dimensional closed manifolds},
     journal = {Sbornik. Mathematics},
     pages = {559--579},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - The Navier--Stokes and Euler equations on two-dimensional closed manifolds
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 559
EP  - 579
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/
LA  - en
ID  - SM_1991_69_2_a14
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T The Navier--Stokes and Euler equations on two-dimensional closed manifolds
%J Sbornik. Mathematics
%D 1991
%P 559-579
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/
%G en
%F SM_1991_69_2_a14
A. A. Ilyin. The Navier--Stokes and Euler equations on two-dimensional closed manifolds. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 559-579. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a14/