Symplectic cobordism of~the~projective spaces
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 543-557

Voir la notice de l'article provenant de la source Math-Net.Ru

Some geometric properties of projective spaces over the classical fields $R$, $C$, and $H$ are studied, which yield a new description of their symplectic cobordism modules. These results lead to new relations in the symplectic cobordism ring of a point. As an application, it is proved that $\theta_1\theta_i\theta_j=0$, where the $\theta_i$ are Ray's elements.
@article{SM_1991_69_2_a13,
     author = {V. G. Gorbunov},
     title = {Symplectic cobordism of~the~projective spaces},
     journal = {Sbornik. Mathematics},
     pages = {543--557},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/}
}
TY  - JOUR
AU  - V. G. Gorbunov
TI  - Symplectic cobordism of~the~projective spaces
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 543
EP  - 557
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/
LA  - en
ID  - SM_1991_69_2_a13
ER  - 
%0 Journal Article
%A V. G. Gorbunov
%T Symplectic cobordism of~the~projective spaces
%J Sbornik. Mathematics
%D 1991
%P 543-557
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/
%G en
%F SM_1991_69_2_a13
V. G. Gorbunov. Symplectic cobordism of~the~projective spaces. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 543-557. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/