Symplectic cobordism of the projective spaces
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 543-557 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some geometric properties of projective spaces over the classical fields $R$, $C$, and $H$ are studied, which yield a new description of their symplectic cobordism modules. These results lead to new relations in the symplectic cobordism ring of a point. As an application, it is proved that $\theta_1\theta_i\theta_j=0$, where the $\theta_i$ are Ray's elements.
@article{SM_1991_69_2_a13,
     author = {V. G. Gorbunov},
     title = {Symplectic cobordism of~the~projective spaces},
     journal = {Sbornik. Mathematics},
     pages = {543--557},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/}
}
TY  - JOUR
AU  - V. G. Gorbunov
TI  - Symplectic cobordism of the projective spaces
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 543
EP  - 557
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/
LA  - en
ID  - SM_1991_69_2_a13
ER  - 
%0 Journal Article
%A V. G. Gorbunov
%T Symplectic cobordism of the projective spaces
%J Sbornik. Mathematics
%D 1991
%P 543-557
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/
%G en
%F SM_1991_69_2_a13
V. G. Gorbunov. Symplectic cobordism of the projective spaces. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 543-557. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a13/

[1] Bukhshtaber V. M., “Kharakteristicheskie klassy v kobordizmakh i topologicheskie prilozheniya teorii odnoznachnykh i dvuznachnykh formalnykh grupp”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 10, VINITI, M., 1978, 5–178 | MR

[2] Ray N., Switzer R., Taylor L., “Normal structures and bordism theory, with application to $MSp$”, Mem. Amer. Math. Soc., 12:193 (1977) | MR | Zbl

[3] Toda H., Kozima K., “The symplectic Lazard ring”, J. Math. Kyoto Univ., 22:1 (1983), 131–153 | MR

[4] Bakuradze M. R., Nadiradze R. G., “Kogomologicheskie realizatsii dvuznachnykh formalnykh grupp i ikh prilozheniya”, Soobsch. AN GSSR, 128:1 (1987), 21–23 | MR

[5] Landveber P., “On symplectic bordism groups of the spaces $Sp(n)$, $HP(n)$, $BSp(n)$”, Michigan Math. J., 15:2 (1968), 145–153 | DOI | MR

[6] Becker J., Gottlieb D., “The transfer map and fibre bundles”, Topology, 14:1 (1975), 1–13 | DOI | MR

[7] James I., “Bundles with special structures”, Ann. Math., 89:2 (1969), 359–390 | DOI | MR | Zbl

[8] Boardman J., Stable homotopy theory, University of Warwick, 1966

[9] Vershinin V. V., “Algebraicheskaya spektralnaya posledovatelnost S. P. Novikova dlya spektra $MSp$”, Sib. matem. zhurn., XXI:1 (1980), 26–43 | MR | Zbl

[10] Ray N., “Indecomposables in Tors $MSp$”, Topology, 10:4 (1971), 261–270 | DOI | MR | Zbl

[11] Ray N., “Some results in generalized homology, $K$-theory and bordism”, Proc. Cambridge Philos. Soc., 71:2 (1972), 283–300 | DOI | MR | Zbl

[12] Vershinin V. V., “Vychislenie koltsa simplekticheskikh kobordizmov v razmernostyakh do 32 i netrivialnost bolshinstva troinykh proizvedenii elementov N. Reya”, Sib. mat. zhurn., 24:1 (1983), 50–62 | MR | Zbl

[13] Morisugi K., “Massy products in $MSp$ and its application”, Math. Kyoto Univ., 23:2 (1983), 867–880 | MR