Application of the divisors theory to numerical integration of periodic functions in several variables
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 527-542
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author exhibits an application of ideal theory to the exact integration of trigonometric polynomials with arbitrarily prescribed coefficient spectrum and to the approximate integration of functions of certain multidimensional classes $E$, $W$, and $H$.
			
            
            
            
          
        
      @article{SM_1991_69_2_a12,
     author = {N. Temirgaliev},
     title = {Application of the divisors theory to numerical integration of periodic functions in several variables},
     journal = {Sbornik. Mathematics},
     pages = {527--542},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a12/}
}
                      
                      
                    TY - JOUR AU - N. Temirgaliev TI - Application of the divisors theory to numerical integration of periodic functions in several variables JO - Sbornik. Mathematics PY - 1991 SP - 527 EP - 542 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a12/ LA - en ID - SM_1991_69_2_a12 ER -
N. Temirgaliev. Application of the divisors theory to numerical integration of periodic functions in several variables. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 527-542. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a12/
