@article{SM_1991_69_2_a11,
author = {E. V. Radkevich},
title = {The existence conditions of the classical solution of the contact {Stefan} problem},
journal = {Sbornik. Mathematics},
pages = {497--525},
year = {1991},
volume = {69},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/}
}
E. V. Radkevich. The existence conditions of the classical solution of the contact Stefan problem. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 497-525. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/
[1] Radkevich E. V., “Usloviya dopolnitelnosti dlya kontaktnykh kraevykh zadach so svobodnoi granitsei”, DAN SSSR, 299:1 (1988), 58–62 | Zbl
[2] Radkevich E. V., “Ob operatornykh puchkakh kontaktnykh zadach so svobodnoi granitsei”, Dinamika sploshnoi sredy, no. 86, Novosibirsk, 1988, 79–87 | MR | Zbl
[3] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR
[4] Solonnikov V. A., “O razreshimosti klassicheskikh nachalno-kraevykh zadach dlya uravneniya teploprovodimosti v dvugrannom ugle”, Zapiski nauch. seminarov LOMI, 138:16 (1984), 146–180 | MR | Zbl
[5] Ei-Ichi Hanzawa, “Classical solutions of Stefan problem”, Tôhoku Math. J. Ser. 2, 33:3 (1981), 297–335 | DOI | MR | Zbl
[6] Mazya V. G., Plamenevskii B. A., “Otsenki funktsii Grina i shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v dvugrannom ugle”, Sib. matem. zhurn., 19 (1978), 1065–1082 | MR
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[8] Oleinik O. A., “Ob odnom metode resheniya obschei zadachi Stefana”, DAN SSSR, 135 (1960), 1054–1057 | MR
[9] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR
[10] Radkevich E. V., “Operatornye puchki zadachi Stefana”, Matem. zametki, 47:2 (1990), 89–101 | MR | Zbl
[11] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[12] Oleinik O. A., Radkevič E. V., Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island, Plenum Press, New York–London, 1971 | MR