The existence conditions of the classical solution of the contact Stefan problem
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 497-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are obtained for a classical solution on a contact manifold when the initial motion of the free boundary is equal to zero.
@article{SM_1991_69_2_a11,
     author = {E. V. Radkevich},
     title = {The existence conditions of the classical solution of the contact {Stefan} problem},
     journal = {Sbornik. Mathematics},
     pages = {497--525},
     year = {1991},
     volume = {69},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/}
}
TY  - JOUR
AU  - E. V. Radkevich
TI  - The existence conditions of the classical solution of the contact Stefan problem
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 497
EP  - 525
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/
LA  - en
ID  - SM_1991_69_2_a11
ER  - 
%0 Journal Article
%A E. V. Radkevich
%T The existence conditions of the classical solution of the contact Stefan problem
%J Sbornik. Mathematics
%D 1991
%P 497-525
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/
%G en
%F SM_1991_69_2_a11
E. V. Radkevich. The existence conditions of the classical solution of the contact Stefan problem. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 497-525. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a11/

[1] Radkevich E. V., “Usloviya dopolnitelnosti dlya kontaktnykh kraevykh zadach so svobodnoi granitsei”, DAN SSSR, 299:1 (1988), 58–62 | Zbl

[2] Radkevich E. V., “Ob operatornykh puchkakh kontaktnykh zadach so svobodnoi granitsei”, Dinamika sploshnoi sredy, no. 86, Novosibirsk, 1988, 79–87 | MR | Zbl

[3] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[4] Solonnikov V. A., “O razreshimosti klassicheskikh nachalno-kraevykh zadach dlya uravneniya teploprovodimosti v dvugrannom ugle”, Zapiski nauch. seminarov LOMI, 138:16 (1984), 146–180 | MR | Zbl

[5] Ei-Ichi Hanzawa, “Classical solutions of Stefan problem”, Tôhoku Math. J. Ser. 2, 33:3 (1981), 297–335 | DOI | MR | Zbl

[6] Mazya V. G., Plamenevskii B. A., “Otsenki funktsii Grina i shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v dvugrannom ugle”, Sib. matem. zhurn., 19 (1978), 1065–1082 | MR

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[8] Oleinik O. A., “Ob odnom metode resheniya obschei zadachi Stefana”, DAN SSSR, 135 (1960), 1054–1057 | MR

[9] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR

[10] Radkevich E. V., “Operatornye puchki zadachi Stefana”, Matem. zametki, 47:2 (1990), 89–101 | MR | Zbl

[11] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[12] Oleinik O. A., Radkevič E. V., Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island, Plenum Press, New York–London, 1971 | MR