On the growing solutions of the strongly degenerate hyperbolic systems
Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 479-496

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies questions on the existence and uniqueness of generalized solutions of a problem with incomplete initial conditions for symmetric degenerate hyperbolic systems of first order with possible growth of the coefficients of the spatial part. Sharp theorems are proved for the existence and uniqueness of generalized solutions in classes of functions which become unbounded on approach to regions of degeneracy and singularity.
@article{SM_1991_69_2_a10,
     author = {A. V. Deryabina},
     title = {On the growing solutions of the strongly degenerate hyperbolic systems},
     journal = {Sbornik. Mathematics},
     pages = {479--496},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_2_a10/}
}
TY  - JOUR
AU  - A. V. Deryabina
TI  - On the growing solutions of the strongly degenerate hyperbolic systems
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 479
EP  - 496
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_2_a10/
LA  - en
ID  - SM_1991_69_2_a10
ER  - 
%0 Journal Article
%A A. V. Deryabina
%T On the growing solutions of the strongly degenerate hyperbolic systems
%J Sbornik. Mathematics
%D 1991
%P 479-496
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_2_a10/
%G en
%F SM_1991_69_2_a10
A. V. Deryabina. On the growing solutions of the strongly degenerate hyperbolic systems. Sbornik. Mathematics, Tome 69 (1991) no. 2, pp. 479-496. http://geodesic.mathdoc.fr/item/SM_1991_69_2_a10/