On the negative spectrum of an elliptic operator
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 155-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New estimates are given for the number of points in the negative spectrum for an elliptic operator or arbitrary order. These estimates generalize and refine the well-known results of Rozenblyum, Lieb, Cwikel, the authors, and others. The proofs have a simple geometric character, and are based on uncomplicated dimensionless imbedding theorems. Also given are results for degenerate elliptic operators, for operators in a domain that contracts or expands in a definite way at infinity, and so on. Theorem 10 gives conditions under which the essential spectrum of an operator contains infinitely many points.
@article{SM_1991_69_1_a9,
     author = {Yu. V. Egorov and V. A. Kondrat'ev},
     title = {On the negative spectrum of an elliptic operator},
     journal = {Sbornik. Mathematics},
     pages = {155--177},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
TI  - On the negative spectrum of an elliptic operator
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 155
EP  - 177
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/
LA  - en
ID  - SM_1991_69_1_a9
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%T On the negative spectrum of an elliptic operator
%J Sbornik. Mathematics
%D 1991
%P 155-177
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/
%G en
%F SM_1991_69_1_a9
Yu. V. Egorov; V. A. Kondrat'ev. On the negative spectrum of an elliptic operator. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 155-177. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/

[1] Rozenblyum G. V., “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, DAN SSSR, 202:5 (1972), 1012–1015

[2] Rozenblyum G. V., “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Izv. vysshikh uchebnykh zavedenii. Matematika, 1976, no. 1, 75–86 | Zbl

[3] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55 (97) (1961), 125–174 | MR | Zbl

[4] Edmunds D. E., Evans W. D., Spectral theory and differential operators, Clarendon Press, Oxford, 1987 | MR | Zbl

[5] Egorov Yu. V., Kondratev V. A., “Ob otsenke chisla tochek otritsatelnogo slektra operatora Shredingera”, Matem. sb., 134 (176) (1987), 556–570

[6] Rid M., Saimon B., Analiz operatorov, t. 4, Mir, M., 1982 | MR

[7] Fefferman Ch., “The uncertainty principle”, Bull. AMS, 9:2 (1983), 1–78 | DOI | MR

[8] Kerman R., Sawyer G., “Weighted norm inequalities for potentials with applications to Schroedinger operators”, Bull. AMS, 12:1 (1985), 112–116 | DOI | MR | Zbl

[9] Mazya V. G., “Ob otritsatelnom spektre mnogomernogo operatora Shredingera”, DAN SSSR, 144:4 (1962), 721–722

[10] Mazya V. G., “K teorii mnogomernogo operatora Shredingera”, DAN SSSR, 28:1 (1964), 1145–1148

[11] Mazya V. G., Prostranstva Soboleva S. L., Izd-vo LGU, L., 1985

[12] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR

[13] Li P., Yau S.-T., “On the Scrodinger equation and the eigenvalue problem”, Comm. Math. Phys., 88 (1983), 309–318 | DOI | MR | Zbl

[14] Lieb E., “Bounds on the eigenvalues of the Laplace and Schroedinger operators”, Bull. AMS, 82 (1976), 751–753 | DOI | MR | Zbl

[15] Lieb E., “The number of bound states of one-body Schroedinger operators and the Weyl problem”, Proc. Symp. Pure Math., 36 (1980), 241–252 | MR | Zbl

[16] Lieb E., “Sharp constants in the Hardy - Littlewood-Sobolev and related inequalities”, Ann. Math., 118 (1983), 349–374 | DOI | MR | Zbl

[17] Lieb E., Thirring W., Inequalities for the moments of the Schroedinger Hamiltonians and their relation to Sobolev inequalities, Studies in Math. Physics, Princeton Univ. Press, 1976 | Zbl

[18] Ivrii B. Ya., “Ob asimptotikakh diskretnogo spektra dlya nekotorykh operatorov v $\mathbf{R}^d$”, Funkts. analiz i ego pril., 19:1 (1985), 73–74 | MR | Zbl