On the negative spectrum of an elliptic operator
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 155-177

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates are given for the number of points in the negative spectrum for an elliptic operator or arbitrary order. These estimates generalize and refine the well-known results of Rozenblyum, Lieb, Cwikel, the authors, and others. The proofs have a simple geometric character, and are based on uncomplicated dimensionless imbedding theorems. Also given are results for degenerate elliptic operators, for operators in a domain that contracts or expands in a definite way at infinity, and so on. Theorem 10 gives conditions under which the essential spectrum of an operator contains infinitely many points.
@article{SM_1991_69_1_a9,
     author = {Yu. V. Egorov and V. A. Kondrat'ev},
     title = {On the negative spectrum of an elliptic operator},
     journal = {Sbornik. Mathematics},
     pages = {155--177},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
TI  - On the negative spectrum of an elliptic operator
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 155
EP  - 177
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/
LA  - en
ID  - SM_1991_69_1_a9
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%T On the negative spectrum of an elliptic operator
%J Sbornik. Mathematics
%D 1991
%P 155-177
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/
%G en
%F SM_1991_69_1_a9
Yu. V. Egorov; V. A. Kondrat'ev. On the negative spectrum of an elliptic operator. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 155-177. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a9/