Multicomponent homogenization for processes in essentially nonhomogeneous structures
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 143-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1991_69_1_a8,
     author = {G. P. Panasenko},
     title = {Multicomponent homogenization for processes in essentially nonhomogeneous structures},
     journal = {Sbornik. Mathematics},
     pages = {143--153},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a8/}
}
TY  - JOUR
AU  - G. P. Panasenko
TI  - Multicomponent homogenization for processes in essentially nonhomogeneous structures
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 143
EP  - 153
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a8/
LA  - en
ID  - SM_1991_69_1_a8
ER  - 
%0 Journal Article
%A G. P. Panasenko
%T Multicomponent homogenization for processes in essentially nonhomogeneous structures
%J Sbornik. Mathematics
%D 1991
%P 143-153
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a8/
%G en
%F SM_1991_69_1_a8
G. P. Panasenko. Multicomponent homogenization for processes in essentially nonhomogeneous structures. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 143-153. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a8/

[1] Panasenko G. P., “Osrednenie polei v kompozitsionnykh materialakh s vysokomodulnoi armaturoi”, Vestn. MGU. Ser. 15. Vychisl. matematika i kibernetika, 1983, no. 2, 20–27 | MR | Zbl

[2] Bakhvalov N. S, Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[3] Panasenko G. P., “O masshtabnom effekte v prostranstvenno-armirovannykh kompozitakh”, Materialy vtoroi vsesoyuznoi nauchno-tekhn. konf. “Prochnost, zhestkost i tekhnologichnost izdelii iz kompozitsionnykh materialov”, t. 3., Izd-vo Erevan. un-ta, Erevan, 1984, 22–24

[4] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] Khruslov E. Ya., “O skhodimosti reshenii vtoroi kraevoi zadachi v slabo svyazannykh oblastyakh”, Teoriya operatorov v funktsionalnykh prostranstvakh i ee prilozheniya, Naukova dumka, Kiev, 1981, 129–174 | MR

[7] Panasenko G. P., “Ob effektivnykh svoistvakh silno neodnorodnykh sred”, UMN, 42:4 (1987), 166

[8] Panasenko G. P., “Metod osredneniya uravnenii s kontrastnymi koeffitsientami”, Metody malogo parametra, Tez. dokl. Vsesoyuznogo nauch. sovesch., Izd-vo Kabardino-Balk. un-ta, Nalchik, 1987, 116

[9] Panasenko G. P., “Osrednenie protsessov v silno neodnorodnykh voloknistykh strukturakh”, Mekhanika neodnorodnykh struktur, Tez. II Vsesoyuznoi konf., 1, Izd-vo Lvov. un-ta, Lvov, 1987, 204

[10] Panasenko G. P., “Osrednenie protsessov v silno neodnorodnykh strukturakh”, DAN SSSR, 298:1 (1988), 76–79 | MR

[11] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–619 | MR