On the averaging principle for systems of stochastic differential equations
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 271-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New theorems are established about averaging of systems of Itö stochastic equations with coefficients measurable with respect to the “slow” variables, and about the limit behavior of a solution of the corresponding Cauchy problem for a singularly perturbed parabolic equation of second order.
@article{SM_1991_69_1_a15,
     author = {A. Yu. Veretennikov},
     title = {On the averaging principle for systems of stochastic differential equations},
     journal = {Sbornik. Mathematics},
     pages = {271--284},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a15/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
TI  - On the averaging principle for systems of stochastic differential equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 271
EP  - 284
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a15/
LA  - en
ID  - SM_1991_69_1_a15
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%T On the averaging principle for systems of stochastic differential equations
%J Sbornik. Mathematics
%D 1991
%P 271-284
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a15/
%G en
%F SM_1991_69_1_a15
A. Yu. Veretennikov. On the averaging principle for systems of stochastic differential equations. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 271-284. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a15/

[1] Kryloff N., Bogoliouboff N., “Les propriétés des probabilités en chaine”, C. r. Acad. Sci. Paris, 204 (1937), 1454–1456 | Zbl

[2] Gikhman I. I., “Differentsialnye uravneniya so sluchainymi funktsiyami”, Zimnyaya shkola po teorii veroyatnostei i matematicheskoi statistike (Uzhgorod, 1964), In-t matematiki, Kiev, 1964, 41–85

[3] Khasminskii R. Z., “O printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Kybernetika, 4:3 (1968), 260–279

[4] Freidlin M. I., “Printsip usredneniya i teoremy o bolshikh ukloneniyakh”, UMN, 33:5 (1978), 107–160 | MR | Zbl

[5] Skorokhod A. V., Asimptoticheskie metody teorii stokhasticheskikh differentsialnykh uravnenii, Naukova dumka, Kiev, 1987 | MR | Zbl

[6] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[7] Freidlin M., Functional integration and partial differential equations, Princeton Univ. Press, Princeton, Mass., 1985 | MR | Zbl

[8] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[9] Veretennikov A. Yu., “O stokhasticheskikh uravneniyakh s vyrozhdayuscheisya po chasti peremennykh diffuziei”, Izv. AN SSSR. Ser. matem., 47 (1983), 189–196 | MR | Zbl

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[11] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii”, Teoriya veroyatnostei i ee primeneniya, 32:2 (1987), 299–308 | MR

[12] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnosti i ee primeneniya, 1:2 (1956), 177–238 | MR

[13] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961

[14] Stroock D. W., Varadhan S. R. S., Multidimensional diffusion processes, Springer-Verlag, N. Y. et al., 1979 | MR | Zbl

[15] Zvonkin A. K., “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, unichtozhayuschee snos”, Matem. sb., 93 (135) (1974), 155–167 | MR