Necessary and sufficient conditions for topological equivalence of three-dimensional Morse--Smale dynamical systems with a~finite number of singular trajectories
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 227-253
Voir la notice de l'article provenant de la source Math-Net.Ru
The author introduces a complete topological invariant of three-dimensional Morse–Smale systems with finitely many singular trajectories, including closed trajectories, which is called the scheme of the dynamical system. Conditions for the equivalence of schemes are given, and it is shown that two systems are topological equivalent if and only if their schemes are equivalent.
@article{SM_1991_69_1_a13,
author = {Ya. L. Umanskii},
title = {Necessary and sufficient conditions for topological equivalence of three-dimensional {Morse--Smale} dynamical systems with a~finite number of singular trajectories},
journal = {Sbornik. Mathematics},
pages = {227--253},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/}
}
TY - JOUR AU - Ya. L. Umanskii TI - Necessary and sufficient conditions for topological equivalence of three-dimensional Morse--Smale dynamical systems with a~finite number of singular trajectories JO - Sbornik. Mathematics PY - 1991 SP - 227 EP - 253 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/ LA - en ID - SM_1991_69_1_a13 ER -
%0 Journal Article %A Ya. L. Umanskii %T Necessary and sufficient conditions for topological equivalence of three-dimensional Morse--Smale dynamical systems with a~finite number of singular trajectories %J Sbornik. Mathematics %D 1991 %P 227-253 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/ %G en %F SM_1991_69_1_a13
Ya. L. Umanskii. Necessary and sufficient conditions for topological equivalence of three-dimensional Morse--Smale dynamical systems with a~finite number of singular trajectories. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 227-253. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/