Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 227-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author introduces a complete topological invariant of three-dimensional Morse–Smale systems with finitely many singular trajectories, including closed trajectories, which is called the scheme of the dynamical system. Conditions for the equivalence of schemes are given, and it is shown that two systems are topological equivalent if and only if their schemes are equivalent.
@article{SM_1991_69_1_a13,
     author = {Ya. L. Umanskii},
     title = {Necessary and sufficient conditions for topological equivalence of three-dimensional {Morse{\textendash}Smale} dynamical systems with a~finite number of singular trajectories},
     journal = {Sbornik. Mathematics},
     pages = {227--253},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/}
}
TY  - JOUR
AU  - Ya. L. Umanskii
TI  - Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 227
EP  - 253
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/
LA  - en
ID  - SM_1991_69_1_a13
ER  - 
%0 Journal Article
%A Ya. L. Umanskii
%T Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories
%J Sbornik. Mathematics
%D 1991
%P 227-253
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/
%G en
%F SM_1991_69_1_a13
Ya. L. Umanskii. Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 227-253. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a13/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl

[2] Peixoto M. M., “On the classification of flows on 2 manifold”, Dynamical Systems (Proc. of Symp. in Salvador. 1971), 1973, 389–419 | MR | Zbl

[3] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei kachestvennuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955), 557–560 | MR | Zbl

[4] Fleitas G., “Classification of gradient like flown on dimensional two and three”, Bol. Soc. Bras. Math., 6 (1975), 155–183 | DOI | MR | Zbl

[5] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa - Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl

[6] Pilyugin S. Yu., “Realizuemye fazovye diagrammy grubykh trekhmernykh sistem bez periodicheskikh traektorii”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 1976, no. 7, 68–75 | Zbl

[7] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR

[8] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti potokov Morsa - Smeila na trekhmernykh mnogoobraziyakh”, VII Vsesoyuznaya topologicheskaya konferentsiya, Tez. dokl., Minsk, 1977, 185

[9] Smale S., “Morse inequalitiese for dynamical systems”, Bul. Amer. Math. Soc., 60 (1960), 43–49 | DOI | MR

[10] Afraimovich V. S, Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa - Smeila”, Tr. MMO, 28 (1973), 181–214 | Zbl

[11] Mints R. M., “O topologicheskoi ekvivalentnosti nekotorykh sostoyanii ravnovesiya sistemy trekh differentsialnykh uravnenii”, Nauch. dokl. vysshei shkoly, 1958, no. 1, 19–24 | MR | Zbl

[12] Umanskii Ya. L., “O topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa -Smeila v okrestnosti osobykh traektorii”, Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gork. gos. un-ta, Gorkii, 1980, 202–216 | MR

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[14] Shilnikov L. P., “O rozhdenii periodicheskogo dvizheniya iz traektorii, dvoyakoasimptoticheskoi k sostoyaniyu ravnovesiya tipa sedlo”, Matem. sb., 77(119) (1968), 461–472 | MR

[15] Shilnikov L. P., “Ob odnoi zadache Puankare - Birkgofa”, Matem. sb., 74(116) (1967), 378–397

[16] Eshmuradov K., “Klassifikatsiya yacheek trekhmernoi dinamicheskoi sistemy bez zamknutykh traektorii”, Izv. vuzov. Radiofizika, 11:11 (1968), 1619–1634

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[18] Pelis Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika (sb. perevodov), 13:2 (1969), 145–155