A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A criterion for the irreducibility of the equation 
$$
\biggl\{\biggl(z\frac\partial{dz}+\lambda_1\biggr)\dotsb\biggl(z\frac\partial{dz}+\lambda_{t+l}\biggr)-z^t\biggl(z\frac\partial{dz}+\nu_1\biggr)\dotsb
\biggl(z\frac\partial{dz}+\nu_l\biggr)\biggr\}(y)=0
$$
is established in the case when $l\geqslant 0$ and $t$ is odd. Arithmetical applications of this result are obtained.
			
            
            
            
          
        
      @article{SM_1991_69_1_a12,
     author = {V. Kh. Salikhov},
     title = {A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions},
     journal = {Sbornik. Mathematics},
     pages = {203--226},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/}
}
                      
                      
                    TY - JOUR AU - V. Kh. Salikhov TI - A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions JO - Sbornik. Mathematics PY - 1991 SP - 203 EP - 226 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/ LA - en ID - SM_1991_69_1_a12 ER -
V. Kh. Salikhov. A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/
