A criterion for the algebraic independence of values of a class of hypergeometric $E$-functions
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for the irreducibility of the equation $$ \biggl\{\biggl(z\frac\partial{dz}+\lambda_1\biggr)\dotsb\biggl(z\frac\partial{dz}+\lambda_{t+l}\biggr)-z^t\biggl(z\frac\partial{dz}+\nu_1\biggr)\dotsb \biggl(z\frac\partial{dz}+\nu_l\biggr)\biggr\}(y)=0 $$ is established in the case when $l\geqslant 0$ and $t$ is odd. Arithmetical applications of this result are obtained.
@article{SM_1991_69_1_a12,
     author = {V. Kh. Salikhov},
     title = {A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions},
     journal = {Sbornik. Mathematics},
     pages = {203--226},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - A criterion for the algebraic independence of values of a class of hypergeometric $E$-functions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 203
EP  - 226
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/
LA  - en
ID  - SM_1991_69_1_a12
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T A criterion for the algebraic independence of values of a class of hypergeometric $E$-functions
%J Sbornik. Mathematics
%D 1991
%P 203-226
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/
%G en
%F SM_1991_69_1_a12
V. Kh. Salikhov. A criterion for the algebraic independence of values of a class of hypergeometric $E$-functions. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/

[1] Siegel K. L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Preuss. Akad. Wiss., Phys.-Math. KI, 1929–1930, no. 1, 1–70 | Zbl

[2] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[3] Shidlovskii A. B., “O kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa tselykh funktsii”, Izv. AN SSSR. Ser. matem., 23 (1959), 35–66 | MR | Zbl

[4] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[5] Salikhov V. Kh., “Formalnye resheniya lineinykh differentsialnykh uravnenii i ikh primenenie v teorii transtsendentnykh chisel”, Tr. MMO, 51 (1988), 223–256 | Zbl

[6] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959

[7] Nesterenko Yu. V., “Ob algebraicheskoi nezavisimosti znachenii $E$-funktsii, udovletvoryayuschikh lineinym neodnorodnym differentsialnym uravneniyam”, Matem. zametki, 5:5 (1969), 587–598 | MR | Zbl

[8] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[9] Leng S., Algebra, Mir, M., 1968

[10] Nesterenko Yu. V., “Ob algebraicheskoi zavisimosti komponent reshenii sistemy lineinykh differentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 38 (1974), 495–512 | MR | Zbl

[11] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963

[12] Shidlovskii A. B., “O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh $E$-funktsii”, Tr. MMO, 8 (1959), 283–320