A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the irreducibility of the equation $$ \biggl\{\biggl(z\frac\partial{dz}+\lambda_1\biggr)\dotsb\biggl(z\frac\partial{dz}+\lambda_{t+l}\biggr)-z^t\biggl(z\frac\partial{dz}+\nu_1\biggr)\dotsb \biggl(z\frac\partial{dz}+\nu_l\biggr)\biggr\}(y)=0 $$ is established in the case when $l\geqslant 0$ and $t$ is odd. Arithmetical applications of this result are obtained.
@article{SM_1991_69_1_a12,
     author = {V. Kh. Salikhov},
     title = {A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions},
     journal = {Sbornik. Mathematics},
     pages = {203--226},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 203
EP  - 226
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/
LA  - en
ID  - SM_1991_69_1_a12
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions
%J Sbornik. Mathematics
%D 1991
%P 203-226
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/
%G en
%F SM_1991_69_1_a12
V. Kh. Salikhov. A~criterion for the algebraic independence of values of a~class of hypergeometric $E$-functions. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 203-226. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a12/