Smoothness of subharmonic functions
Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 179-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The smoothness of functions subharmonic in a domain $D\subset\mathbf R^n$, $n\geqslant 2$, is studied. The method for studying smoothness is based on the Riesz theorem on representation of a subharmonic function as the sum of a harmonic function and the potential $U^\mu(x)$ with respect to some Borel measure $\mu$.
@article{SM_1991_69_1_a10,
     author = {A. S. Sadullaev and R. Madrakhimov},
     title = {Smoothness of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {179--195},
     year = {1991},
     volume = {69},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_69_1_a10/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - R. Madrakhimov
TI  - Smoothness of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 179
EP  - 195
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_69_1_a10/
LA  - en
ID  - SM_1991_69_1_a10
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A R. Madrakhimov
%T Smoothness of subharmonic functions
%J Sbornik. Mathematics
%D 1991
%P 179-195
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_69_1_a10/
%G en
%F SM_1991_69_1_a10
A. S. Sadullaev; R. Madrakhimov. Smoothness of subharmonic functions. Sbornik. Mathematics, Tome 69 (1991) no. 1, pp. 179-195. http://geodesic.mathdoc.fr/item/SM_1991_69_1_a10/

[1] Aleksandrov A. D., “Suschestvovanie pochti vezde vtorogo differentsiala vypukloi funktsii i nekotorye svyazannye s nim svoistva vypuklykh poverkhnostei”, Uch. zap. LGU. Ser. matem., 1936, no. 6, 3–35

[2] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M.–L., 1948 | MR | Zbl

[3] Alimov Sh. A., “Drobnye stepeni ellipticheskikh operatorov i izomorfizm klassov differentsiruemykh funktsii”, Differents. uravneniya, 8 (1972), 1609–1626 | MR | Zbl

[4] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl

[6] Gusman M., Differentsirovanie integralov v $\mathbf{R}^n$, Mir, M., 1978 | MR

[7] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[8] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[9] Landkof N. S., Osnovy sovremennoi teorii potentsialov, Nauka, M., 1966 | MR | Zbl

[10] Madrakhimov R. M., “O gladkosti subgarmonicheskikh funktsii na ploskosti”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1987, no. 3, 16–20 | MR | Zbl

[11] Madrakhimov R. M., “O gladkosti subgarmonicheskikh funktsii”, DAN UzSSR, 1988, no. 2, 3–4 | MR | Zbl

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[13] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[14] Uermer Dzh., Teoriya potentsiala, Mir, M., 1980 | MR

[15] Khermander L., “O srednikh Rissa spektralnykh funktsii ellipticheskikh differentsialnykh operatorov i sootvetstvuyuschikh spektralnykh razlozheniyakh”, Matematika (Sb. perevodov), 12:5 (1968), 91–130

[16] Cartan H., “Theorie du Potentiel newtonien energie, capacite, suites de potentiels”, Bull. Soc. Math. France, 73 (1945), 74–106 | MR | Zbl