Averaging principles for eguations with rapidly oscillatory coefficients
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 503-553 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elliptic equations of arbitrary order with smooth, rapidly oscillating coefficients are considered. An algorithm is set forth for constructing a formal asymptotic expansion of solutions of such equations. The algorithm consists in the successive solution of a number of periodic problems. The solvability conditions for these problems lead to an averaged equation (system) with constant coefficients. It is proved that if the solution of the equation is bounded and converges to some limit in a suitable sense, then the limit function (vector) satisfies the averaged equation (system). An asymptotic expansion of solutions of an equation of divergence form of arbitrary order is constructed. This makes it possible to obtain for such equations estimates of the form $$ \|u_\varepsilon-u_s^0\|_s\leqslant C\sqrt\varepsilon, $$ where $2s$ is the order of the equation, $u_\varepsilon$ is a solution of the equation, and $u_s^0$ comprises $s$ terms of the asymptotic expansion. Bibliography: 22 titles.
@article{SM_1991_68_2_a9,
     author = {G. V. Sandrakov},
     title = {Averaging principles for eguations with rapidly oscillatory coefficients},
     journal = {Sbornik. Mathematics},
     pages = {503--553},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a9/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Averaging principles for eguations with rapidly oscillatory coefficients
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 503
EP  - 553
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a9/
LA  - en
ID  - SM_1991_68_2_a9
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Averaging principles for eguations with rapidly oscillatory coefficients
%J Sbornik. Mathematics
%D 1991
%P 503-553
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a9/
%G en
%F SM_1991_68_2_a9
G. V. Sandrakov. Averaging principles for eguations with rapidly oscillatory coefficients. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 503-553. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a9/

[1] Bakhvalov N. S, Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland Publ. Comp., Amsterdam, 1978 | MR

[3] Kozlov S. M., “Privodimost kvaziperiodicheskikh differentsialnykh operatorov i usrednenie”, Tr. MMO, 46 (1983), 99–123 | MR

[4] Zhikov V. V., “Asimptoticheskoe povedenie i stabilizatsiya reshenii parabolicheskogo uravneniya vtorogo poryadka s mladshimi chlenami”, Tr. MMO, 46 (1983), 69–98 | MR | Zbl

[5] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[6] Panich O. I., Vvedenie v obschuyu teoriyu ellipticheskikh kraevykh zadach, Vischa shkola, Kiev, 1986 | MR | Zbl

[7] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, UMN, 33:2 (1978), 3–47 | MR | Zbl

[8] Rempel Sh., Shultse B.-V., Teoriya indeksa ellipticheskikh kraevykh zadach, Mir, M., 1986 | MR | Zbl

[9] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[10] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[11] Sandrakov G. V., Osrednenie linearizovannoi sistemy gidrodinamiki s maloi vyazkostyu i skorost zvuka v smesyakh, Preprint OVM AN SSSR No 178, OVM AN SSSR, M., 1987 | MR

[12] Vishik M. I., Lyusternik L. A., “Reshenie nekotorykh zadach o vozmuschenii v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii. 1”, UMN, 15:3 (1960), 3–80 | MR | Zbl

[13] Kozlov S. M., “Osrednenie differentsialnykh operatorov s pochti periodicheskimi bystroostsilliruyuschimi koeffitsientami”, Matem. sb., 107(149) (1978), 199–217 | Zbl

[14] Khermander L., K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, M., 1959

[15] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1969 | MR | Zbl

[16] Pyatnitskii A. L., “Usrednenie singulyarno vozmuschennogo uravneniya s bystroostsilliruyuschimi koeffitsientami v sloe”, Matem. sb., 121(163) (1983), 18–39 | MR

[17] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[18] Zhikov V. V., Sirazhudinov M. M., “Usrednenie nedivergentnykh ellipticheskikh i parabolicheskikh operatorov vtorogo poryadka i stabilizatsiya resheniya zadachi Koshi”, Matem. sb., 116(158) (1981), 166–186 | MR | Zbl

[19] Egorov Yu. V., Lektsii po uravneniyam s chastnymi proizvodnymi. Dopolnitelnye glavy, Izd-vo MGU, M., 1985 | MR | Zbl

[20] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[21] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[22] Zhikov V. V., Kozlov S. M., Oleinik O. A., “O $G$-skhodimosti parabolicheskikh operatorov”, UMN, 36:1 (1981), 11–58 | MR